{"title":"Asymptotic Stability Controller Design of Three Fixed-wing UAVs Formation with Windy Field","authors":"Pu Zhang, Huifeng Xue, Shan Gao","doi":"10.1109/ICUAS.2019.8798314","DOIUrl":null,"url":null,"abstract":"This paper addressed a well documented open problem on the asymptotic flight-stability of the closed-loop system in the process of the windy field for a three fixed-wing unmanned aerial vehicles (UAVs) formation. The problem of stability can be converted to the analysis of dynamic response and steady-state error. The robust control compared with phononic crystal control method, it can realize the high speed and close cooperative formation of precision combat. Adding phononic crystal is not only capable of reducing the body vibration and steady-state tracking error, but also owns better robustness. The horizontal dynamic analysis of the formation of UAVs is carried out in the presence of external unknown factors. Then, an “integrated” controller is designed to control leader’s speed so that “follower” can track the “leader” in the case of decoupling, while maintaining the consensus of relative speed. The simulation results show that the “integrated” control method integrates the advantages of robust control and phononic crystal vibration attenuation.","PeriodicalId":426616,"journal":{"name":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2019.8798314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper addressed a well documented open problem on the asymptotic flight-stability of the closed-loop system in the process of the windy field for a three fixed-wing unmanned aerial vehicles (UAVs) formation. The problem of stability can be converted to the analysis of dynamic response and steady-state error. The robust control compared with phononic crystal control method, it can realize the high speed and close cooperative formation of precision combat. Adding phononic crystal is not only capable of reducing the body vibration and steady-state tracking error, but also owns better robustness. The horizontal dynamic analysis of the formation of UAVs is carried out in the presence of external unknown factors. Then, an “integrated” controller is designed to control leader’s speed so that “follower” can track the “leader” in the case of decoupling, while maintaining the consensus of relative speed. The simulation results show that the “integrated” control method integrates the advantages of robust control and phononic crystal vibration attenuation.