Deep Learning with Semi-Synthetic Training Images for Detection of Non-Cooperative UAVs

C. Briese, Lukas Guenther
{"title":"Deep Learning with Semi-Synthetic Training Images for Detection of Non-Cooperative UAVs","authors":"C. Briese, Lukas Guenther","doi":"10.1109/ICUAS.2019.8797731","DOIUrl":null,"url":null,"abstract":"This paper presents a method to generate a dataset for training a deep convolutional network to detect a non cooperative unmanned aerial vehicle in video data. Deep convolutional network have shown a great potential for tasks like object detection and have been continuously improved in the last years. Still, the amount of training data is large and their generation can be complex and time consuming, especially if the appearance of the detected object is not clearly specified. The concept presented here is to train a deep convolutional neural network just with a few two dimensional images of unmanned aerial vehicle to simplify the process of generating training data. Performance of the trained network is evaluated with data from real experimental flights and compared with hand-labeled ground truth data to validate the correctness. To cover situations when the classifier fails at the detection, the output is integrated in a image processing pipeline for object tracking in order to establish a continuous tracking.","PeriodicalId":426616,"journal":{"name":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2019.8797731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a method to generate a dataset for training a deep convolutional network to detect a non cooperative unmanned aerial vehicle in video data. Deep convolutional network have shown a great potential for tasks like object detection and have been continuously improved in the last years. Still, the amount of training data is large and their generation can be complex and time consuming, especially if the appearance of the detected object is not clearly specified. The concept presented here is to train a deep convolutional neural network just with a few two dimensional images of unmanned aerial vehicle to simplify the process of generating training data. Performance of the trained network is evaluated with data from real experimental flights and compared with hand-labeled ground truth data to validate the correctness. To cover situations when the classifier fails at the detection, the output is integrated in a image processing pipeline for object tracking in order to establish a continuous tracking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于半合成训练图像的深度学习非合作无人机检测
本文提出了一种生成数据集的方法,用于训练深度卷积网络来检测视频数据中的非合作无人机。深度卷积网络在目标检测等任务中显示出巨大的潜力,并且在过去几年中不断得到改进。尽管如此,训练数据的数量还是很大的,它们的生成可能是复杂和耗时的,特别是在检测到的物体的外观没有明确指定的情况下。本文提出的概念是用少量的无人机二维图像训练一个深度卷积神经网络,以简化生成训练数据的过程。用真实飞行实验数据对训练网络的性能进行了评估,并与手工标注的地面真值数据进行了比较,以验证其正确性。为了覆盖分类器检测失败的情况,将输出集成到图像处理管道中进行对象跟踪,以建立连续跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Centroid vectoring control using aerial manipulator: Experimental results Comparative Study for Coordinating Multiple Unmanned HAPS for Communications Area Coverage A Methodology for evaluating Commercial Off The Shelf parachutes designed for sUAS failsafe systems Model-Based Fail-Safe Module for Autonomous Multirotor UAVs with Parachute Systems Deep Learning with Semi-Synthetic Training Images for Detection of Non-Cooperative UAVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1