Restructuring Particle Swarm Optimization algorithm based on linear system theory

Jian-lin Zhu, Jianhua Liu, Zihang Wang, Yuxiang Chen
{"title":"Restructuring Particle Swarm Optimization algorithm based on linear system theory","authors":"Jian-lin Zhu, Jianhua Liu, Zihang Wang, Yuxiang Chen","doi":"10.1109/CEC55065.2022.9870261","DOIUrl":null,"url":null,"abstract":"The original Particle Swarm Optimization (PSO) used two formulas to describe updating of particle's position and velocity, respectively, based on simulating the foraging behavior of bird swarm. The general improving methods on PSO are to adjust and optimize its parameters or combine new learning strategy to update velocity formula for the better performance. But these methods lack of theoretical analysis and make the algorithm more complex. This paper proposes a new formulation to restructure the particles' position updating behaviors based on linear system theory, and obtain a Restructuring PSO algorithm (RPSO). Compared with the conventional PSO algorithm, RPSO only uses one particle position updating formula, without velocity updating formula, and takes fewer parameters. In order to verify the effectiveness of RPSO, experiments on the CEC 2013 benchmark functions have been conducted to compare with four algorithms, and the final results show that proposed algorithm has a certain degree of competition.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The original Particle Swarm Optimization (PSO) used two formulas to describe updating of particle's position and velocity, respectively, based on simulating the foraging behavior of bird swarm. The general improving methods on PSO are to adjust and optimize its parameters or combine new learning strategy to update velocity formula for the better performance. But these methods lack of theoretical analysis and make the algorithm more complex. This paper proposes a new formulation to restructure the particles' position updating behaviors based on linear system theory, and obtain a Restructuring PSO algorithm (RPSO). Compared with the conventional PSO algorithm, RPSO only uses one particle position updating formula, without velocity updating formula, and takes fewer parameters. In order to verify the effectiveness of RPSO, experiments on the CEC 2013 benchmark functions have been conducted to compare with four algorithms, and the final results show that proposed algorithm has a certain degree of competition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于线性系统理论的重构粒子群优化算法
原有的粒子群优化算法在模拟鸟群觅食行为的基础上,分别用两个公式来描述粒子位置和速度的更新。一般的改进方法是对粒子群的参数进行调整和优化,或者结合新的学习策略来更新速度公式以获得更好的性能。但这些方法缺乏理论分析,使算法更加复杂。提出了一种基于线性系统理论重构粒子位置更新行为的新公式,得到了一种重构粒子群算法(RPSO)。与传统粒子群算法相比,粒子群算法只使用一个粒子位置更新公式,不使用速度更新公式,需要的参数更少。为了验证RPSO算法的有效性,在CEC 2013基准函数上进行了实验,并与四种算法进行了比较,最终结果表明所提算法具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1