{"title":"Open-Ended Questions","authors":"Subhadra Dutta, Eric O’Rourke","doi":"10.1093/oso/9780190939717.003.0013","DOIUrl":null,"url":null,"abstract":"Natural language processing (NLP) is the field of decoding human written language. This chapter responds to the growing interest in using machine learning–based NLP approaches for analyzing open-ended employee survey responses. These techniques address scalability and the ability to provide real-time insights to make qualitative data collection equally or more desirable in organizations. The chapter walks through the evolution of text analytics in industrial–organizational psychology and discusses relevant supervised and unsupervised machine learning NLP methods for survey text data, such as latent Dirichlet allocation, latent semantic analysis, sentiment analysis, word relatedness methods, and so on. The chapter also lays out preprocessing techniques and the trade-offs of growing NLP capabilities internally versus externally, points the readers to available resources, and ends with discussing implications and future directions of these approaches.","PeriodicalId":192200,"journal":{"name":"Employee Surveys and Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Employee Surveys and Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780190939717.003.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Natural language processing (NLP) is the field of decoding human written language. This chapter responds to the growing interest in using machine learning–based NLP approaches for analyzing open-ended employee survey responses. These techniques address scalability and the ability to provide real-time insights to make qualitative data collection equally or more desirable in organizations. The chapter walks through the evolution of text analytics in industrial–organizational psychology and discusses relevant supervised and unsupervised machine learning NLP methods for survey text data, such as latent Dirichlet allocation, latent semantic analysis, sentiment analysis, word relatedness methods, and so on. The chapter also lays out preprocessing techniques and the trade-offs of growing NLP capabilities internally versus externally, points the readers to available resources, and ends with discussing implications and future directions of these approaches.