Fault Diagnosis Method of Wind Turbine Bearing Based on Improved Intrinsic Time-scale Decomposition and Spectral Kurtosis

Ying Zhang, Chao Zhang, Xinyuan Liu, Wei Wang, Yu Han, Na Wu
{"title":"Fault Diagnosis Method of Wind Turbine Bearing Based on Improved Intrinsic Time-scale Decomposition and Spectral Kurtosis","authors":"Ying Zhang, Chao Zhang, Xinyuan Liu, Wei Wang, Yu Han, Na Wu","doi":"10.1109/ICACI.2019.8778629","DOIUrl":null,"url":null,"abstract":"Based on the linear transformation of intrinsic time-scale Decomposition (ITD) method and cubic spline interpolation, this paper proposes an Improved Intrinsic Time-scale Decomposition method (IITD). The IITD method and Spectrum Kurtosis (SK) are combined to realize the intelligent diagnosis of bearing faults. Simulation and experimental results show that the IITD-SK method proposed in this paper successfully extracts the fault feature frequency, and can realize effective diagnosis of bearing faults. Compared with the results of traditional Fourier transform, envelope spectrum analysis and EMD method, this method has a better diagnosis effect.","PeriodicalId":213368,"journal":{"name":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","volume":"599 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2019.8778629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Based on the linear transformation of intrinsic time-scale Decomposition (ITD) method and cubic spline interpolation, this paper proposes an Improved Intrinsic Time-scale Decomposition method (IITD). The IITD method and Spectrum Kurtosis (SK) are combined to realize the intelligent diagnosis of bearing faults. Simulation and experimental results show that the IITD-SK method proposed in this paper successfully extracts the fault feature frequency, and can realize effective diagnosis of bearing faults. Compared with the results of traditional Fourier transform, envelope spectrum analysis and EMD method, this method has a better diagnosis effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进内禀时间尺度分解和谱峰度的风电轴承故障诊断方法
基于固有时标分解(ITD)方法的线性变换和三次样条插值,提出了一种改进的固有时标分解(IITD)方法。将IITD方法与谱峭度(SK)相结合,实现了轴承故障的智能诊断。仿真和实验结果表明,本文提出的IITD-SK方法成功提取了故障特征频率,能够实现轴承故障的有效诊断。与传统的傅里叶变换、包络谱分析和EMD方法的诊断结果相比,该方法具有更好的诊断效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Diagnosis Method of Wind Turbine Bearing Based on Improved Intrinsic Time-scale Decomposition and Spectral Kurtosis Stage Actor Tracking Method Based on Kalman Filter Parameter Identification, Verification and Simulation of the CSD Transport Process A 2D Observation Model-Based Algorithm for Blind Single Image Super-Resolution Reconstruction A Deep Residual Networks Accelerator on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1