A 2D Observation Model-Based Algorithm for Blind Single Image Super-Resolution Reconstruction

Liqin Huang, Youshen Xia
{"title":"A 2D Observation Model-Based Algorithm for Blind Single Image Super-Resolution Reconstruction","authors":"Liqin Huang, Youshen Xia","doi":"10.1109/ICACI.2019.8778603","DOIUrl":null,"url":null,"abstract":"In essence, image super-resolution refers to the transformation from small size image to large size image, that is, the increase of pixel density of image can provide more detailed information. It’s well-known that 1D super-resolution model can not be written directly into the form of 2D model, because the matrix dimension of high-solution image and low-solution image does not agree. The proposed 2D-based blind super-resolution algorithm combining with sparse representation model and TV term. The proposed method is to reduce the complexity of the operation by decomposing the blur matrix and the sampling matrix in the horizontal (row) and vertical (column) directions. The experimental results show that the proposed method can better protect the edge and provide more texture structure.","PeriodicalId":213368,"journal":{"name":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2019.8778603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In essence, image super-resolution refers to the transformation from small size image to large size image, that is, the increase of pixel density of image can provide more detailed information. It’s well-known that 1D super-resolution model can not be written directly into the form of 2D model, because the matrix dimension of high-solution image and low-solution image does not agree. The proposed 2D-based blind super-resolution algorithm combining with sparse representation model and TV term. The proposed method is to reduce the complexity of the operation by decomposing the blur matrix and the sampling matrix in the horizontal (row) and vertical (column) directions. The experimental results show that the proposed method can better protect the edge and provide more texture structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于二维观测模型的单幅图像盲超分辨率重建算法
图像超分辨率本质上是指从小尺寸图像到大尺寸图像的转换,即图像像素密度的增加可以提供更详细的信息。众所周知,一维超分辨率模型不能直接写成二维模型的形式,因为高分辨率图像和低分辨率图像的矩阵维数不一致。提出了一种结合稀疏表示模型和电视项的二维盲超分辨算法。提出的方法是通过在水平(行)和垂直(列)方向上分解模糊矩阵和采样矩阵来降低操作的复杂性。实验结果表明,该方法可以更好地保护边缘,提供更多的纹理结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Diagnosis Method of Wind Turbine Bearing Based on Improved Intrinsic Time-scale Decomposition and Spectral Kurtosis Stage Actor Tracking Method Based on Kalman Filter Parameter Identification, Verification and Simulation of the CSD Transport Process A 2D Observation Model-Based Algorithm for Blind Single Image Super-Resolution Reconstruction A Deep Residual Networks Accelerator on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1