Mask R-CNN Algoritması ile Hangar Tespiti Hangar Detection with Mask R-CNN Algorithm

Asli Nur Ömeroglu, Nida Kumbasar, E. A. Oral, I. Y. Özbek
{"title":"Mask R-CNN Algoritması ile Hangar Tespiti Hangar Detection with Mask R-CNN Algorithm","authors":"Asli Nur Ömeroglu, Nida Kumbasar, E. A. Oral, I. Y. Özbek","doi":"10.1109/SIU.2019.8806552","DOIUrl":null,"url":null,"abstract":"In this study, the detection of hangars in high resolution airport (civil and military) satellite images was performed using Mask R-CNN algorithm. Although the detection of buildings in the satellite images is a common practice, being some of the hangars camouflaged in different sizes cause difficulty for the detection algorithms. In Mask R-CNN, an instance object segmentation algorithm, objects in the images are detected, bounding box of each object as well as their pixel information with in the box are marked separately. In this study, high resolution hangar data set with 300 samples, collected from various air bases, was prepared, and an 85% average precision is achieved using Mask R-CNN.","PeriodicalId":326275,"journal":{"name":"2019 27th Signal Processing and Communications Applications Conference (SIU)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2019.8806552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this study, the detection of hangars in high resolution airport (civil and military) satellite images was performed using Mask R-CNN algorithm. Although the detection of buildings in the satellite images is a common practice, being some of the hangars camouflaged in different sizes cause difficulty for the detection algorithms. In Mask R-CNN, an instance object segmentation algorithm, objects in the images are detected, bounding box of each object as well as their pixel information with in the box are marked separately. In this study, high resolution hangar data set with 300 samples, collected from various air bases, was prepared, and an 85% average precision is achieved using Mask R-CNN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于掩模R-CNN算法的机库检测
本研究采用Mask R-CNN算法对高分辨率机场(民用和军用)卫星图像中的机库进行检测。虽然在卫星图像中检测建筑物是一种常见的做法,但由于一些机库被伪装成不同的大小,因此给检测算法带来了困难。Mask R-CNN是一种实例对象分割算法,对图像中的对象进行检测,分别标记每个对象的边界框及其在边界框中的像素信息。在本研究中,准备了来自各个空军基地的300个样本的高分辨率机库数据集,并使用Mask R-CNN实现了85%的平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antenna Selection on Spatial Modulation: A Machine Learning Approach Design of Phase and Amplitude Controlled Circuits for Active Phased-Array RF Beamforming Networks Classification of Extracranial and Intracranial EEG Signals by using Finite Impulse Response Filter through Ensemble Learning Visual Place Recognition by DTW-based sequence alignment Delay Analysis for Wireless Communication Systems with Caching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1