{"title":"Designing Run-Time Fault-Tolerance Using Dynamic Updates","authors":"Ali Ebnenasir","doi":"10.1109/SEAMS.2007.5","DOIUrl":null,"url":null,"abstract":"We present a framework for designing run-time fault- tolerance using dynamic program updates triggered by faults. This is an important problem in the design of autonomous systems as it is often the case that a running program needs to be upgraded to its fault-tolerant version once faults occur. We formally state fault-triggered program updates as a design problem. We then present a sound and complete algorithm that automates the design of fault- triggered updates for replacing a program that does not tolerate faults with a fault-tolerant version thereof at run-time. We also define three classes of fault-triggered dynamic updates that tolerate faults during the update. We demonstrate our approach in the context of a fault-triggered update for the gate controller of a parking lot.","PeriodicalId":354701,"journal":{"name":"International Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS '07)","volume":"83 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAMS.2007.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We present a framework for designing run-time fault- tolerance using dynamic program updates triggered by faults. This is an important problem in the design of autonomous systems as it is often the case that a running program needs to be upgraded to its fault-tolerant version once faults occur. We formally state fault-triggered program updates as a design problem. We then present a sound and complete algorithm that automates the design of fault- triggered updates for replacing a program that does not tolerate faults with a fault-tolerant version thereof at run-time. We also define three classes of fault-triggered dynamic updates that tolerate faults during the update. We demonstrate our approach in the context of a fault-triggered update for the gate controller of a parking lot.