Towards knowledge-enriched path computation

Georgios Skoumas, Klaus Arthur Schmid, Gregor Jossé, Andreas Züfle, M. Nascimento, M. Renz, D. Pfoser
{"title":"Towards knowledge-enriched path computation","authors":"Georgios Skoumas, Klaus Arthur Schmid, Gregor Jossé, Andreas Züfle, M. Nascimento, M. Renz, D. Pfoser","doi":"10.1145/2666310.2666485","DOIUrl":null,"url":null,"abstract":"Directions and paths, as commonly provided by navigation systems, are usually derived considering absolute metrics, e.g., finding the shortest path within an underlying road network. With the aid of crowdsourced geospatial data we aim at obtaining paths that do not only minimize distance but also lead through more popular areas using knowledge generated by users. We extract spatial relations such as \"nearby\" or \"next to\" from geo-textual travel blogs, that define closeness between pairs of points of interest (POIs) and quantify each of these relations using a probabilistic model. Using Bayesian inference, we obtain a probabilistic measure of spatial closeness according to the crowd. Applying this measure to the corresponding road network, we derive an altered cost function taking crowdsourced spatial relations into account. We propose two routing algorithms on the enriched road networks. To evaluate our approach, we use Flickr photo data as a ground truth for popularity. Our experimental results -- based on real world datasets -- show that the computed paths yield competitive solutions in terms of path length while also providing more \"popular\" paths, making routing easier and more informative for the user.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Directions and paths, as commonly provided by navigation systems, are usually derived considering absolute metrics, e.g., finding the shortest path within an underlying road network. With the aid of crowdsourced geospatial data we aim at obtaining paths that do not only minimize distance but also lead through more popular areas using knowledge generated by users. We extract spatial relations such as "nearby" or "next to" from geo-textual travel blogs, that define closeness between pairs of points of interest (POIs) and quantify each of these relations using a probabilistic model. Using Bayesian inference, we obtain a probabilistic measure of spatial closeness according to the crowd. Applying this measure to the corresponding road network, we derive an altered cost function taking crowdsourced spatial relations into account. We propose two routing algorithms on the enriched road networks. To evaluate our approach, we use Flickr photo data as a ground truth for popularity. Our experimental results -- based on real world datasets -- show that the computed paths yield competitive solutions in terms of path length while also providing more "popular" paths, making routing easier and more informative for the user.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
走向知识丰富的路径计算
通常由导航系统提供的方向和路径,通常是根据绝对度量来推导的,例如,在潜在的道路网络中找到最短的路径。在众包地理空间数据的帮助下,我们的目标是获得路径,不仅可以最大限度地减少距离,而且可以利用用户产生的知识引导更受欢迎的区域。我们从地理文本旅游博客中提取空间关系,如“附近”或“旁边”,这些空间关系定义了兴趣点对(poi)之间的紧密程度,并使用概率模型量化这些关系。利用贝叶斯推理,我们根据人群获得了空间亲密度的概率度量。将这一措施应用于相应的道路网络,我们将众包空间关系考虑在内,得出了一个改变的成本函数。本文提出了两种基于丰富路网的路由算法。为了评估我们的方法,我们使用Flickr照片数据作为流行度的基本事实。我们的实验结果——基于真实世界的数据集——表明,计算路径在路径长度方面产生了有竞争力的解决方案,同时也提供了更多的“流行”路径,使路由更容易,对用户来说信息更丰富。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A parallel query engine for interactive spatiotemporal analysis Spatio-temporal trajectory simplification for inferring travel paths Parameterized spatial query processing based on social probabilistic clustering Accurate and efficient map matching for challenging environments Top-k point of interest retrieval using standard indexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1