Periodic quick test for classifying long-term activities

Pekka Siirtola, Heli Koskimäki, J. Röning
{"title":"Periodic quick test for classifying long-term activities","authors":"Pekka Siirtola, Heli Koskimäki, J. Röning","doi":"10.1109/CIDM.2011.5949426","DOIUrl":null,"url":null,"abstract":"A novel method to classify long-term human activities is presented in this study. The method consists of two parts: quick test and periodic classification. The quick test uses temporal information to improve recognition accuracy, while the periodic classification is based on the assumption that recognized activities are long-term. Periodic quick test (PQT) classification was tested using a data set consisting of six long-term sports exercises. The data were collected from six persons wearing a two-dimensional accelerometer on their wrist. The results show that the presented method is not only faster than a normal method, that does not use temporal information and does not assume that activities are long-term, but also more accurate. The results were compared with a normal sliding window technique which divides signal into smaller sequences and classifies each sequence into one of the six classes. The classification accuracy using a normal method was around 84% while using PQT the recognition rate was over 90%. In addition, the number of classified sequences using a normal method was over six times higher than using PQT.","PeriodicalId":211565,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2011.5949426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A novel method to classify long-term human activities is presented in this study. The method consists of two parts: quick test and periodic classification. The quick test uses temporal information to improve recognition accuracy, while the periodic classification is based on the assumption that recognized activities are long-term. Periodic quick test (PQT) classification was tested using a data set consisting of six long-term sports exercises. The data were collected from six persons wearing a two-dimensional accelerometer on their wrist. The results show that the presented method is not only faster than a normal method, that does not use temporal information and does not assume that activities are long-term, but also more accurate. The results were compared with a normal sliding window technique which divides signal into smaller sequences and classifies each sequence into one of the six classes. The classification accuracy using a normal method was around 84% while using PQT the recognition rate was over 90%. In addition, the number of classified sequences using a normal method was over six times higher than using PQT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对长期活动进行分类的定期快速测试
提出了一种新的人类长期活动分类方法。该方法由快速检测和周期性分类两部分组成。快速测试使用时间信息来提高识别精度,而周期性分类是基于识别活动是长期的假设。定期快速测试(PQT)分类测试使用的数据集包括六个长期运动。这些数据是从六个人身上收集的,他们的手腕上戴着一个二维加速度计。结果表明,该方法不仅比常规方法更快,不使用时间信息,不假设活动是长期的,而且更准确。结果与常规滑动窗口技术进行了比较,该技术将信号分成更小的序列,并将每个序列分为六个类之一。常规方法的分类准确率在84%左右,而PQT方法的识别率在90%以上。此外,使用正常方法分类序列的数量比使用PQT高出6倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A multi-Biclustering Combinatorial Based algorithm Active classifier training with the 3DS strategy Link Pattern Prediction with tensor decomposition in multi-relational networks Using gaming strategies for attacker and defender in recommender systems Generating materialized views using ant based approaches and information retrieval technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1