Shape Optimization of a Submerged Pressure Differential Wave Energy Converter for Load Reductions

Michael Kelly, Mohammad-Reza Alam
{"title":"Shape Optimization of a Submerged Pressure Differential Wave Energy Converter for Load Reductions","authors":"Michael Kelly, Mohammad-Reza Alam","doi":"10.1115/omae2019-96390","DOIUrl":null,"url":null,"abstract":"\n The ocean is full of untapped energy, however it is a wild place where harsh conditions can occur that can damage wave energy converters (WEC’s). During high load conditions, many WEC’s must go into survival mode to prevent damage or are overdesigned to continue operating in high sea states, which can increase capital costs. The authors propose a different approach, where geometry control is used to change to an absorber shape that experiences minimal hydrodynamic loads during high sea states. This could allow for a decrease in capital costs while increasing the operating range of WEC’s. This paper seeks an optimal geometry of a submerged planar pressure differential WEC that minimizes heave excitation force or motion magnitudes without using the power take-off system. Simple elliptical and circular absorbers as well as optimized absorbers are compared to quantify heave load reductions. Optimized absorbers are generated using a summation of Fourier terms with controllable weights and phases that are optimized with a genetic algorithm for two regular wave conditions. Heave load reductions are found to depend on wave frequency, orientation angle, and elongation. It is shown that peak loads can be reduced by up to 60% when comparing to a circular absorber.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The ocean is full of untapped energy, however it is a wild place where harsh conditions can occur that can damage wave energy converters (WEC’s). During high load conditions, many WEC’s must go into survival mode to prevent damage or are overdesigned to continue operating in high sea states, which can increase capital costs. The authors propose a different approach, where geometry control is used to change to an absorber shape that experiences minimal hydrodynamic loads during high sea states. This could allow for a decrease in capital costs while increasing the operating range of WEC’s. This paper seeks an optimal geometry of a submerged planar pressure differential WEC that minimizes heave excitation force or motion magnitudes without using the power take-off system. Simple elliptical and circular absorbers as well as optimized absorbers are compared to quantify heave load reductions. Optimized absorbers are generated using a summation of Fourier terms with controllable weights and phases that are optimized with a genetic algorithm for two regular wave conditions. Heave load reductions are found to depend on wave frequency, orientation angle, and elongation. It is shown that peak loads can be reduced by up to 60% when comparing to a circular absorber.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于减载的水下压差波能转换器的形状优化
海洋充满了未开发的能量,然而它是一个狂野的地方,在那里恶劣的条件会发生,可能会损坏波浪能量转换器(WEC)。在高负荷条件下,许多WEC必须进入生存模式以防止损坏,或者过度设计以继续在高海况下运行,这可能会增加资本成本。作者提出了一种不同的方法,即使用几何控制来改变吸收器的形状,从而在高海况下承受最小的水动力载荷。这可以降低资本成本,同时增加WEC的工作范围。本文寻求在不使用动力输出系统的情况下,将升沉激励力或运动幅度最小化的水下平面压差WEC的最佳几何形状。简单的椭圆和圆形减震器以及优化减震器进行了比较,量化了升沉载荷的减少。优化的吸收器是使用具有可控权重和相位的傅立叶项的总和生成的,这些项是针对两个规则波条件用遗传算法优化的。发现升沉载荷的减小取决于波浪频率、取向角和伸长率。结果表明,与圆形吸收体相比,峰值负荷可减少60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FIV Energy Harvesting From Sharp-Edge Oscillators On Design and Analysis of a Drivetrain Test Rig for Wind Turbine Health Monitoring The Influence of Tidal Unsteadiness on a Tidal Turbine Blade Flow-Induced Vibration Learning a Predictionless Resonating Controller for Wave Energy Converters Performance of a Passive Tuned Liquid Column Damper for Floating Wind Turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1