Operating principle of a high resolution ultrasonic ranging system based in a phase processing

Laura X. Chaparro, C. R. Contreras, J. Meneses
{"title":"Operating principle of a high resolution ultrasonic ranging system based in a phase processing","authors":"Laura X. Chaparro, C. R. Contreras, J. Meneses","doi":"10.1117/12.2025832","DOIUrl":null,"url":null,"abstract":"Traditionally, ultrasonic ranging sensors emit pulse trains. The distance traveled by the received signal is calculated from its delay with respect to the emitted signal. There are different strategies to encode the signal in order to determine the delay. In this paper we present a method for encoding amplitude that encodes the amplitude of a signal formed by rectangular pulse trains whose frequency is 40 kHz. The pulse amplitude is encoded in a binary manner according to a pseudorandom sequence. Owing to that the emitted signal is formed by pulse trains whose amplitude is modulated, the impulse response of the designed system generates sinusoidal pulse trains whose amplitude is variable. The proposed strategy uses the phase of signal to position temporally each pulse trains. This positioning has higher precision than the sampling time of the signal.","PeriodicalId":135913,"journal":{"name":"Iberoamerican Meeting of Optics and the Latin American Meeting of Optics, Lasers and Their Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iberoamerican Meeting of Optics and the Latin American Meeting of Optics, Lasers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2025832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Traditionally, ultrasonic ranging sensors emit pulse trains. The distance traveled by the received signal is calculated from its delay with respect to the emitted signal. There are different strategies to encode the signal in order to determine the delay. In this paper we present a method for encoding amplitude that encodes the amplitude of a signal formed by rectangular pulse trains whose frequency is 40 kHz. The pulse amplitude is encoded in a binary manner according to a pseudorandom sequence. Owing to that the emitted signal is formed by pulse trains whose amplitude is modulated, the impulse response of the designed system generates sinusoidal pulse trains whose amplitude is variable. The proposed strategy uses the phase of signal to position temporally each pulse trains. This positioning has higher precision than the sampling time of the signal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相位处理的高分辨率超声测距系统的工作原理
传统上,超声波测距传感器发射脉冲序列。接收信号行进的距离由其相对于发射信号的延迟计算。有不同的策略来编码信号,以确定延迟。本文提出了一种对频率为40khz的矩形脉冲串构成的信号的幅度进行编码的方法。脉冲幅度按照伪随机序列以二进制方式编码。由于发射信号是由幅度调制的脉冲串构成的,因此所设计系统的脉冲响应产生幅度可变的正弦脉冲串。该策略利用信号的相位对每个脉冲序列进行时域定位。这种定位比信号的采样时间具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Remote access to an interferometric fringes stabilization active system via RENATA Optical design of a Coudé-Train for a stable and efficient simultaneous feeding of the ESPRESSO spectrograph from the four VLT telescopes Configurable multipulsing of a MOPA pulsed fiber laser with applications in materials processing New method for sub-structured Ronchi rulings generation and his irradiance profile Photorefractive moiré-like patterns with different variation directions for multi-projection in profilometer applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1