QuaDUE-CCM: Interpretable Distributional Reinforcement Learning using Uncertain Contraction Metrics for Precise Quadrotor Trajectory Tracking

Yanran Wang, James O’Keeffe, Qiuchen Qian, David E. Boyle
{"title":"QuaDUE-CCM: Interpretable Distributional Reinforcement Learning using Uncertain Contraction Metrics for Precise Quadrotor Trajectory Tracking","authors":"Yanran Wang, James O’Keeffe, Qiuchen Qian, David E. Boyle","doi":"10.48550/arXiv.2207.07789","DOIUrl":null,"url":null,"abstract":"Accuracy and stability are common requirements for Quadrotor trajectory tracking systems. Designing an accurate and stable tracking controller remains challenging, particularly in unknown and dynamic environments with complex aerodynamic disturbances. We propose a Quantile-approximation-based Distributional-reinforced Uncertainty Estimator (QuaDUE) to accurately identify the effects of aerodynamic disturbances, i.e., the uncertainties between the true and estimated Control Contraction Metrics (CCMs). Taking inspiration from contraction theory and integrating the QuaDUE for uncertainties, our novel CCM-based trajectory tracking framework tracks any feasible reference trajectory precisely whilst guaranteeing exponential convergence. More importantly, the convergence and training acceleration of the distributional RL are guaranteed and analyzed, respectively, from theoretical perspectives. We also demonstrate our system under unknown and diverse aerodynamic forces. Under large aerodynamic forces (>2m/s^2), compared with the classic data-driven approach, our QuaDUE-CCM achieves at least a 56.6% improvement in tracking error. Compared with QuaDRED-MPC, a distributional RL-based approach, QuaDUE-CCM achieves at least a 3 times improvement in contraction rate.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.07789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Accuracy and stability are common requirements for Quadrotor trajectory tracking systems. Designing an accurate and stable tracking controller remains challenging, particularly in unknown and dynamic environments with complex aerodynamic disturbances. We propose a Quantile-approximation-based Distributional-reinforced Uncertainty Estimator (QuaDUE) to accurately identify the effects of aerodynamic disturbances, i.e., the uncertainties between the true and estimated Control Contraction Metrics (CCMs). Taking inspiration from contraction theory and integrating the QuaDUE for uncertainties, our novel CCM-based trajectory tracking framework tracks any feasible reference trajectory precisely whilst guaranteeing exponential convergence. More importantly, the convergence and training acceleration of the distributional RL are guaranteed and analyzed, respectively, from theoretical perspectives. We also demonstrate our system under unknown and diverse aerodynamic forces. Under large aerodynamic forces (>2m/s^2), compared with the classic data-driven approach, our QuaDUE-CCM achieves at least a 56.6% improvement in tracking error. Compared with QuaDRED-MPC, a distributional RL-based approach, QuaDUE-CCM achieves at least a 3 times improvement in contraction rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用不确定收缩度量进行精确四旋翼轨迹跟踪的可解释分布强化学习
精度和稳定性是四旋翼飞行器轨迹跟踪系统的共同要求。设计一个精确和稳定的跟踪控制器仍然是一个挑战,特别是在未知和动态的环境中,复杂的空气动力学干扰。我们提出了一个基于分位数近似的分布增强不确定性估计器(QuaDUE)来准确识别气动干扰的影响,即真实和估计的控制收缩度量(ccm)之间的不确定性。从收缩理论中获得灵感,并对不确定性进行积分,我们的新型基于ccm的轨迹跟踪框架精确地跟踪任何可行的参考轨迹,同时保证指数收敛。更重要的是,从理论角度对分布式强化学习的收敛性和训练加速性进行了保证和分析。我们还演示了我们的系统在未知的和不同的空气动力。在较大的空气动力(>2m/s^2)下,与经典的数据驱动方法相比,我们的QuaDUE-CCM的跟踪误差至少提高了56.6%。与基于分布式rl的QuaDRED-MPC方法相比,QuaDUE-CCM的收缩速率提高了至少3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MResT: Multi-Resolution Sensing for Real-Time Control with Vision-Language Models Lidar Line Selection with Spatially-Aware Shapley Value for Cost-Efficient Depth Completion Safe Robot Learning in Assistive Devices through Neural Network Repair COACH: Cooperative Robot Teaching Learning Goal-Conditioned Policies Offline with Self-Supervised Reward Shaping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1