Model Predictive Current Control of PMSM drives for Achieving both Fast Transient Response and Ripple Suppression

H. Kawai, J. Cordier, R. Kennel, S. Doki
{"title":"Model Predictive Current Control of PMSM drives for Achieving both Fast Transient Response and Ripple Suppression","authors":"H. Kawai, J. Cordier, R. Kennel, S. Doki","doi":"10.1109/IECON48115.2021.9589696","DOIUrl":null,"url":null,"abstract":"This study presents current control algorithm based on a finite control set model predictive control (FCS-MPC) to achieve both high dynamics and current ripple suppression. In the proposed method, the smoothed voltage vectors with a finite set are applied as a control input candidate to avoid a sudden change in output voltage which generates large current ripple. In addition, the smoothness is determined automatically depending on a drive situation and system’s specification. Owing to this, fast transient response is achieved while keeping small current ripple during drive operation. The simulated and experimental results obtained with a permanent magnet synchronous motor (PMSM) show that the proposed method is effective for current ripple reduction and high dynamics control as compared to traditional FCS-MPC approach.","PeriodicalId":443337,"journal":{"name":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","volume":"39 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON48115.2021.9589696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study presents current control algorithm based on a finite control set model predictive control (FCS-MPC) to achieve both high dynamics and current ripple suppression. In the proposed method, the smoothed voltage vectors with a finite set are applied as a control input candidate to avoid a sudden change in output voltage which generates large current ripple. In addition, the smoothness is determined automatically depending on a drive situation and system’s specification. Owing to this, fast transient response is achieved while keeping small current ripple during drive operation. The simulated and experimental results obtained with a permanent magnet synchronous motor (PMSM) show that the proposed method is effective for current ripple reduction and high dynamics control as compared to traditional FCS-MPC approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现快速瞬态响应和纹波抑制的PMSM驱动器模型预测电流控制
提出了一种基于有限控制集模型预测控制(FCS-MPC)的电流控制算法,以实现高动态和电流纹波抑制。该方法采用有限组平滑电压矢量作为控制候选输入,避免了输出电压突变产生的大纹波。此外,平滑度是根据驱动情况和系统规格自动确定的。因此,在驱动过程中,可以实现快速的瞬态响应,同时保持较小的电流纹波。在永磁同步电机上的仿真和实验结果表明,与传统的FCS-MPC方法相比,该方法具有减小电流纹波和高动态控制的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Extended Phase Shift Modulation for DAB Converter with the Blocking Capacitor An Online Noninvasive Estimation Method of Electrolytic Capacitor for Boost Converters Control of Grid-tied Dual-PV LLC Converter using Adaptive Neuro Fuzzy Interface System (ANFIS) Space Vector Modulation Scheme for Three-Phase Single-Stage SEPIC-Based Grid-Connected Differential Inverter Dynamic Phasor-Based Modeling and Analysis of Dual-Loop Controlled DC-DC Converters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1