PENGEMBANGAN NEURAL NETWORK UNTUK PREDIKSI KUALITAS AIR

Aretha Safira, L. M. Sarudi As., Afifa Puspitasari, Nur Mayke Eka Normasari, A. Rifai
{"title":"PENGEMBANGAN NEURAL NETWORK UNTUK PREDIKSI KUALITAS AIR","authors":"Aretha Safira, L. M. Sarudi As., Afifa Puspitasari, Nur Mayke Eka Normasari, A. Rifai","doi":"10.34151/rekavasi.v10i2.4014","DOIUrl":null,"url":null,"abstract":"Research on artificial intelligence to determine water quality has been widely developed as a human endeavor toimprove the quality of life. This study employs an artificial neural network (ANN) to determine the optimalclassification model for determining the safety of water. This study uses existing Kaggle generic datasets. Numerouspreprocesses were performed on the dataset starting from cleaning the data from missing values and outliers toequalizing the weights of each parameter with the min-max scaler. This study compares the accuracy of ANN modelin various scenarios constructed with 10, 15, 20, and 30 neurons. Scaled Conjugate Gradient is implemented as thelearning algorithm for developing the prediction model. The obtained results of the experiments vary betweenscenarios. Overall accuracy increases when the number of neurons is between 10 and 20, and decreases when thenumber of neurons is between 20 and 30.","PeriodicalId":299729,"journal":{"name":"Jurnal Rekavasi","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Rekavasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34151/rekavasi.v10i2.4014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Research on artificial intelligence to determine water quality has been widely developed as a human endeavor toimprove the quality of life. This study employs an artificial neural network (ANN) to determine the optimalclassification model for determining the safety of water. This study uses existing Kaggle generic datasets. Numerouspreprocesses were performed on the dataset starting from cleaning the data from missing values and outliers toequalizing the weights of each parameter with the min-max scaler. This study compares the accuracy of ANN modelin various scenarios constructed with 10, 15, 20, and 30 neurons. Scaled Conjugate Gradient is implemented as thelearning algorithm for developing the prediction model. The obtained results of the experiments vary betweenscenarios. Overall accuracy increases when the number of neurons is between 10 and 20, and decreases when thenumber of neurons is between 20 and 30.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水质量预测的神经网络开发
人工智能确定水质的研究作为人类提高生活质量的一项努力已经得到了广泛的发展。本研究采用人工神经网络(ANN)来确定确定水安全的最佳分类模型。本研究使用现有的Kaggle通用数据集。从清除缺失值和离群值的数据开始,对数据集进行了多次预处理,并用最小-最大标量均衡每个参数的权重。本研究比较了人工神经网络模型在由10、15、20和30个神经元组成的不同场景下的准确性。采用缩放共轭梯度作为预测模型的学习算法。在不同的情况下,得到的实验结果是不同的。当神经元数量在10到20之间时,整体准确性增加,当神经元数量在20到30之间时,整体准确性降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PENGEMBANGAN NEURAL NETWORK UNTUK PREDIKSI KUALITAS AIR ANALISIS BEBAN KERJA FISIK DAN MENTAL PEKERJA PADA PROSES VULKANISIR BAN DENGAN MENGGUNAKAN METODE CARDIOVASCULAR LOAD (CVL) DAN NASA-TLX Power Apps pada Sistem Pemodelan Pengambilan Obat di Klinik Melia PT. POMI, Paiton PENGEMBANGAN MODEL THEORY OF PLANNED BEHAVIOR UNTUK ANALISIS NIAT MENGGUNAKAN TAS BELANJA RAMAH LINGKUNGAN PADA SUPERMARKET MODERN Persediaan Spare Part Menggunakan Reliability Centered Spares Dan inventory Analysis Di CV. selorejo Bantul
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1