Reflectance-based material classification for printed circuit boards

S. Tominaga, Sachiko Okamoto
{"title":"Reflectance-based material classification for printed circuit boards","authors":"S. Tominaga, Sachiko Okamoto","doi":"10.1109/ICIAP.2003.1234056","DOIUrl":null,"url":null,"abstract":"This paper describes a method for classifying object materials on a raw circuit board based on surface-spectral reflectance. First we introduce a multi-spectral imaging system for observing tiny objects and capturing their spectral data. The imaging system is composed of a liquid-crystal tunable filter, a monochrome CCD camera, macro-lens and a personal computer. We describe how we can estimate the spectral reflectance functions of object surfaces by using the multi-spectral imaging system. We show that dielectric materials like plastics can be distinguished from metals based on the reflectance difference in changing illumination geometries. Then an algorithm is presented for classifying the objects into several circuit elements based on the estimated spectral-reflectances. Region segmentation results of the circuit board are demonstrated in an experiment using a real board. The performance of the proposed imaging system and algorithms is examined in comparison with the RGB-based methods using a normal color camera.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper describes a method for classifying object materials on a raw circuit board based on surface-spectral reflectance. First we introduce a multi-spectral imaging system for observing tiny objects and capturing their spectral data. The imaging system is composed of a liquid-crystal tunable filter, a monochrome CCD camera, macro-lens and a personal computer. We describe how we can estimate the spectral reflectance functions of object surfaces by using the multi-spectral imaging system. We show that dielectric materials like plastics can be distinguished from metals based on the reflectance difference in changing illumination geometries. Then an algorithm is presented for classifying the objects into several circuit elements based on the estimated spectral-reflectances. Region segmentation results of the circuit board are demonstrated in an experiment using a real board. The performance of the proposed imaging system and algorithms is examined in comparison with the RGB-based methods using a normal color camera.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印刷电路板的基于反射的材料分类
本文介绍了一种基于表面光谱反射率对原始电路板上物体材料进行分类的方法。首先,我们介绍了一种用于观测微小物体并获取其光谱数据的多光谱成像系统。该成像系统由液晶可调滤光片、单色CCD相机、微距镜头和个人电脑组成。介绍了如何利用多光谱成像系统估计物体表面的光谱反射率函数。我们表明,像塑料这样的介电材料可以根据改变照明几何形状的反射率差异与金属区分开来。然后提出了一种基于估计的光谱反射率将目标划分为若干电路元件的算法。在实际电路板上进行了区域分割实验。通过与基于rgb的普通彩色相机成像方法的比较,研究了所提出的成像系统和算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification method for colored natural textures using Gabor filtering Perceptive visual texture classification and retrieval Deferring range/domain comparisons in fractal image compression Modeling the world: the virtualization pipeline A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1