Signature recognition on bank cheques using ANN

Shubhangi L. Karanjkar, P. Vasambekar
{"title":"Signature recognition on bank cheques using ANN","authors":"Shubhangi L. Karanjkar, P. Vasambekar","doi":"10.1109/WIECON-ECE.2016.8009084","DOIUrl":null,"url":null,"abstract":"In India, now-a-days 95% of Indians are expected to use the bank transactions even for day-to-day requirements. Recognizing the genuine signature and finding out the fraud signature is the challenging task. Here, we have used an approach of Artificial Neural Network (ANN) to recognize the signature. In this method a signature is collected from the bank cheque by cropping the area of interest. Further it is trained and stored into the trained database. Then signatures to be tested are compared with the signatures that are stored into the test database. Area, centroid, skewness, standard deviation, mean of the signature images are the parameters used to recognize the signature. By comparing the signatures from the parameters that are derived, the system can recognize the original signature.","PeriodicalId":412645,"journal":{"name":"2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIECON-ECE.2016.8009084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In India, now-a-days 95% of Indians are expected to use the bank transactions even for day-to-day requirements. Recognizing the genuine signature and finding out the fraud signature is the challenging task. Here, we have used an approach of Artificial Neural Network (ANN) to recognize the signature. In this method a signature is collected from the bank cheque by cropping the area of interest. Further it is trained and stored into the trained database. Then signatures to be tested are compared with the signatures that are stored into the test database. Area, centroid, skewness, standard deviation, mean of the signature images are the parameters used to recognize the signature. By comparing the signatures from the parameters that are derived, the system can recognize the original signature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的银行支票签名识别
在印度,如今95%的印度人甚至会使用银行交易来满足日常需求。识别真实签名和发现欺诈签名是一项具有挑战性的任务。在这里,我们使用了人工神经网络(ANN)的方法来识别签名。在这种方法中,通过裁剪利息区域从银行支票中收集签名。然后对其进行训练并存储到训练过的数据库中。然后将待测试的签名与存储在测试数据库中的签名进行比较。签名图像的面积、质心、偏度、标准差、均值是用来识别签名的参数。通过对导出的参数签名进行比较,系统可以识别原始签名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The interference management and cost analysis perspective of femtocell in 4G network Magnetic levitation of solar powered motor with forward-reverse operation: Mathematical design consideration Image hashing by CCQ-CSLBP Fabrication of FeTiO3/SiO2 matrix based sensors for glucose detection in blood Grid connected hybrid solar system with MPPT charge controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1