Local memory-aware kernel perforation

Daniel Maier, Biagio Cosenza, B. Juurlink
{"title":"Local memory-aware kernel perforation","authors":"Daniel Maier, Biagio Cosenza, B. Juurlink","doi":"10.1145/3168814","DOIUrl":null,"url":null,"abstract":"Many applications provide inherent resilience to some amount of error and can potentially trade accuracy for performance by using approximate computing. Applications running on GPUs often use local memory to minimize the number of global memory accesses and to speed up execution. Local memory can also be very useful to improve the way approximate computation is performed, e.g., by improving the quality of approximation with data reconstruction techniques. This paper introduces local memory-aware perforation techniques specifically designed for the acceleration and approximation of GPU kernels. We propose a local memory-aware kernel perforation technique that first skips the loading of parts of the input data from global memory, and later uses reconstruction techniques on local memory to reach higher accuracy while having performance similar to state-of-the-art techniques. Experiments show that our approach is able to accelerate the execution of a variety of applications from 1.6× to 3× while introducing an average error of 6%, which is much smaller than that of other approaches. Results further show how much the error depends on the input data and application scenario, the impact of local memory tuning and different parameter configurations.","PeriodicalId":103558,"journal":{"name":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3168814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Many applications provide inherent resilience to some amount of error and can potentially trade accuracy for performance by using approximate computing. Applications running on GPUs often use local memory to minimize the number of global memory accesses and to speed up execution. Local memory can also be very useful to improve the way approximate computation is performed, e.g., by improving the quality of approximation with data reconstruction techniques. This paper introduces local memory-aware perforation techniques specifically designed for the acceleration and approximation of GPU kernels. We propose a local memory-aware kernel perforation technique that first skips the loading of parts of the input data from global memory, and later uses reconstruction techniques on local memory to reach higher accuracy while having performance similar to state-of-the-art techniques. Experiments show that our approach is able to accelerate the execution of a variety of applications from 1.6× to 3× while introducing an average error of 6%, which is much smaller than that of other approaches. Results further show how much the error depends on the input data and application scenario, the impact of local memory tuning and different parameter configurations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本地内存感知的内核穿孔
许多应用程序对一定数量的错误提供了固有的弹性,并且可以通过使用近似计算来潜在地以准确性换取性能。在gpu上运行的应用程序通常使用本地内存来最小化全局内存访问的数量并加快执行速度。局部内存对于改进近似计算的执行方式也非常有用,例如,通过使用数据重建技术提高近似的质量。本文介绍了专门为GPU内核的加速和逼近而设计的局部内存感知穿孔技术。我们提出了一种局部内存感知的内核穿孔技术,该技术首先跳过从全局内存加载部分输入数据,然后在局部内存上使用重建技术来达到更高的精度,同时具有与最先进的技术相似的性能。实验表明,我们的方法能够将各种应用程序的执行速度从1.6倍提高到3倍,同时引入6%的平均误差,这比其他方法要小得多。结果进一步显示了误差在多大程度上取决于输入数据和应用场景、本地内存调优的影响和不同的参数配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance stencil code generation with Lift DeLICM: scalar dependence removal at zero memory cost Local memory-aware kernel perforation Analyzing and optimizing task granularity on the JVM Lightweight detection of cache conflicts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1