Analyzing and optimizing task granularity on the JVM

Andrea Rosà, Eduardo Rosales, Walter Binder
{"title":"Analyzing and optimizing task granularity on the JVM","authors":"Andrea Rosà, Eduardo Rosales, Walter Binder","doi":"10.1145/3168828","DOIUrl":null,"url":null,"abstract":"Task granularity, i.e., the amount of work performed by parallel tasks, is a key performance attribute of parallel applications. On the one hand, fine-grained tasks (i.e., small tasks carrying out few computations) may introduce considerable parallelization overheads. On the other hand, coarse-grained tasks (i.e., large tasks performing substantial computations) may not fully utilize the available CPU cores, resulting in missed parallelization opportunities. In this paper, we provide a better understanding of task granularity for applications running on a Java Virtual Machine. We present a novel profiler which measures the granularity of every executed task. Our profiler collects carefully selected metrics from the whole system stack with only little overhead, and helps the developer locate performance problems. We analyze task granularity in the DaCapo and ScalaBench benchmark suites, revealing several inefficiencies related to fine-grained and coarse-grained tasks. We demonstrate that the collected task-granularity profiles are actionable by optimizing task granularity in two benchmarks, achieving speedups up to 1.53x.","PeriodicalId":103558,"journal":{"name":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3168828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Task granularity, i.e., the amount of work performed by parallel tasks, is a key performance attribute of parallel applications. On the one hand, fine-grained tasks (i.e., small tasks carrying out few computations) may introduce considerable parallelization overheads. On the other hand, coarse-grained tasks (i.e., large tasks performing substantial computations) may not fully utilize the available CPU cores, resulting in missed parallelization opportunities. In this paper, we provide a better understanding of task granularity for applications running on a Java Virtual Machine. We present a novel profiler which measures the granularity of every executed task. Our profiler collects carefully selected metrics from the whole system stack with only little overhead, and helps the developer locate performance problems. We analyze task granularity in the DaCapo and ScalaBench benchmark suites, revealing several inefficiencies related to fine-grained and coarse-grained tasks. We demonstrate that the collected task-granularity profiles are actionable by optimizing task granularity in two benchmarks, achieving speedups up to 1.53x.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在JVM上分析和优化任务粒度
任务粒度,即并行任务执行的工作量,是并行应用程序的一个关键性能属性。一方面,细粒度任务(即执行很少计算的小任务)可能会引入相当大的并行开销。另一方面,粗粒度任务(即执行大量计算的大型任务)可能无法充分利用可用的CPU内核,从而导致错过并行化机会。在本文中,我们提供了对运行在Java虚拟机上的应用程序的任务粒度的更好理解。我们提出了一种新的分析器,它可以测量每个执行任务的粒度。我们的分析器从整个系统堆栈中收集精心选择的指标,开销很小,并帮助开发人员定位性能问题。我们分析了DaCapo和scalabbench基准套件中的任务粒度,揭示了与细粒度和粗粒度任务相关的一些低效率。我们通过在两个基准测试中优化任务粒度来证明收集的任务粒度配置文件是可操作的,从而实现高达1.53倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance stencil code generation with Lift DeLICM: scalar dependence removal at zero memory cost Local memory-aware kernel perforation Analyzing and optimizing task granularity on the JVM Lightweight detection of cache conflicts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1