A Submatrix-Based Method for Approximate Matrix Function Evaluation in the Quantum Chemistry Code CP2K

Michael Lass, Robert Schade, T. Kuhne, Christian Plessl
{"title":"A Submatrix-Based Method for Approximate Matrix Function Evaluation in the Quantum Chemistry Code CP2K","authors":"Michael Lass, Robert Schade, T. Kuhne, Christian Plessl","doi":"10.1109/SC41405.2020.00084","DOIUrl":null,"url":null,"abstract":"Electronic structure calculations based on density-functional theory (DFT) represent a significant part of today’s HPC workloads and pose high demands on high-performance computing resources. To perform these quantum-mechanical DFT calculations on complex large-scale systems, so-called linear scaling methods instead of conventional cubic scaling methods are required. In this work, we take up the idea of the submatrix method and apply it to the DFT computations in the software package CP2K. For that purpose, we transform the underlying numeric operations on distributed, large, sparse matrices into computations on local, much smaller and nearly dense matrices. This allows us to exploit the full floating-point performance of modern CPUs and to make use of dedicated accelerator hardware, where performance has been limited by memory bandwidth before. We demonstrate both functionality and performance of our implementation and show how it can be accelerated with GPUs and FPGAs.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Electronic structure calculations based on density-functional theory (DFT) represent a significant part of today’s HPC workloads and pose high demands on high-performance computing resources. To perform these quantum-mechanical DFT calculations on complex large-scale systems, so-called linear scaling methods instead of conventional cubic scaling methods are required. In this work, we take up the idea of the submatrix method and apply it to the DFT computations in the software package CP2K. For that purpose, we transform the underlying numeric operations on distributed, large, sparse matrices into computations on local, much smaller and nearly dense matrices. This allows us to exploit the full floating-point performance of modern CPUs and to make use of dedicated accelerator hardware, where performance has been limited by memory bandwidth before. We demonstrate both functionality and performance of our implementation and show how it can be accelerated with GPUs and FPGAs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子化学代码CP2K中基于子矩阵的近似矩阵函数求值方法
基于密度泛函理论(DFT)的电子结构计算是当今高性能计算工作的重要组成部分,对高性能计算资源提出了很高的要求。为了在复杂的大尺度系统上执行这些量子力学DFT计算,需要所谓的线性标度方法而不是传统的三次标度方法。在这项工作中,我们将子矩阵方法的思想应用到软件包CP2K中的DFT计算中。为此,我们将分布式、大型、稀疏矩阵上的底层数值运算转换为局部、小得多且接近密集的矩阵上的计算。这使我们能够充分利用现代cpu的浮点性能,并利用专用的加速器硬件,在此之前,性能受到内存带宽的限制。我们演示了我们实现的功能和性能,并展示了如何使用gpu和fpga加速它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAB-MPI: Exploring Interprocess Work-Stealing towards Balanced MPI Communication Toward Realization of Numerical Towing-Tank Tests by Wall-Resolved Large Eddy Simulation based on 32 Billion Grid Finite-Element Computation Scalable yet Rigorous Floating-Point Error Analysis Scalable Knowledge Graph Analytics at 136 Petaflop/s BORA: A Bag Optimizer for Robotic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1