A Circuit Attention Network-Based Actor-Critic Learning Approach to Robust Analog Transistor Sizing

Yaguang Li, Yishuang Lin, Meghna Madhusudan, A. Sharma, S. Sapatnekar, R. Harjani, Jiang Hu
{"title":"A Circuit Attention Network-Based Actor-Critic Learning Approach to Robust Analog Transistor Sizing","authors":"Yaguang Li, Yishuang Lin, Meghna Madhusudan, A. Sharma, S. Sapatnekar, R. Harjani, Jiang Hu","doi":"10.1109/MLCAD52597.2021.9531156","DOIUrl":null,"url":null,"abstract":"Analog integrated circuit design is highly complex and its automation is a long-standing challenge. We present a reinforcement learning approach to automatic transistor sizing, a key step in determining analog circuit performance. A circuit attention network technique is developed to capture the impact of transistor sizing on circuit performance in an actor-critic learning framework. Our approach also includes a stochastic technique for addressing layout effect, another important factor affecting performance. Compared to Bayesian optimization (BO) and Graph Convolutional Network-based reinforcement learning (GCN-RL), two state-of-the-art methods, the proposed approach significantly improves robustness against layout uncertainty while achieving better post-layout performance. BO and GCN-RL can be enhanced with our stochastic technique to reach solution quality similar to ours, but still suffer from a much slower convergence rate. Moreover, the knowledge transfer in our approach is more effective than that in GCN-RL.","PeriodicalId":210763,"journal":{"name":"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLCAD52597.2021.9531156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Analog integrated circuit design is highly complex and its automation is a long-standing challenge. We present a reinforcement learning approach to automatic transistor sizing, a key step in determining analog circuit performance. A circuit attention network technique is developed to capture the impact of transistor sizing on circuit performance in an actor-critic learning framework. Our approach also includes a stochastic technique for addressing layout effect, another important factor affecting performance. Compared to Bayesian optimization (BO) and Graph Convolutional Network-based reinforcement learning (GCN-RL), two state-of-the-art methods, the proposed approach significantly improves robustness against layout uncertainty while achieving better post-layout performance. BO and GCN-RL can be enhanced with our stochastic technique to reach solution quality similar to ours, but still suffer from a much slower convergence rate. Moreover, the knowledge transfer in our approach is more effective than that in GCN-RL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电路注意网络的Actor-Critic学习方法稳健模拟晶体管尺寸
模拟集成电路设计非常复杂,其自动化是一个长期的挑战。我们提出了一种强化学习方法来自动调整晶体管尺寸,这是确定模拟电路性能的关键步骤。一种电路注意网络技术的发展,以捕捉晶体管尺寸对电路性能的影响,在演员-评论家学习框架。我们的方法还包括解决布局效应的随机技术,这是影响性能的另一个重要因素。与贝叶斯优化(BO)和基于图卷积网络的强化学习(GCN-RL)这两种最先进的方法相比,该方法显著提高了对布局不确定性的鲁棒性,同时获得了更好的布局后性能。BO和GCN-RL可以通过我们的随机技术进行增强,以达到与我们相似的解质量,但仍然存在收敛速度慢得多的问题。此外,该方法的知识转移比GCN-RL方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPT: An Adaptive Machine Learning Framework with Application to Lithography Hotspot Detection Approximate Divider Design Based on Counting-Based Stochastic Computing Division A Circuit Attention Network-Based Actor-Critic Learning Approach to Robust Analog Transistor Sizing Massive Figure Extraction and Classification in Electronic Component Datasheets for Accelerating PCB Design Preparation Fast Electrostatic Analysis For VLSI Aging based on Generative Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1