Iris Recognition Performance Analysis for Noncooperative Conditions

Oktay Koç, A. Uka, Maaruf Ali, Klevis Muda, Orges Balla, Albana Roci
{"title":"Iris Recognition Performance Analysis for Noncooperative Conditions","authors":"Oktay Koç, A. Uka, Maaruf Ali, Klevis Muda, Orges Balla, Albana Roci","doi":"10.1109/iCCECE49321.2020.9231089","DOIUrl":null,"url":null,"abstract":"A biometric system is presented using the human iris to help determine the authenticity of an individual. The system extracts the unique features of the iris that are recorded in templates. These templates are then compared with other irides utilising Daugman’s method. This follows a strict procedure (including segmentation, normalization, encoding and matching) over which a user has complete control. Often the recognition phase is crucial in nonoptimal or noncooperative conditions. In this work, a comparison is made of the relative accuracy of utilizing noisy iris datasets. The performance is analysed for a different number of iris images per person, for different number of individuals, for different noise levels using three different segmentations and three different encoding schemes. Adjustment of the Gabor filters’ bandwidth used in the encoding stage proves to be decisive in improving the accuracy for higher noise levels.","PeriodicalId":413847,"journal":{"name":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCCECE49321.2020.9231089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A biometric system is presented using the human iris to help determine the authenticity of an individual. The system extracts the unique features of the iris that are recorded in templates. These templates are then compared with other irides utilising Daugman’s method. This follows a strict procedure (including segmentation, normalization, encoding and matching) over which a user has complete control. Often the recognition phase is crucial in nonoptimal or noncooperative conditions. In this work, a comparison is made of the relative accuracy of utilizing noisy iris datasets. The performance is analysed for a different number of iris images per person, for different number of individuals, for different noise levels using three different segmentations and three different encoding schemes. Adjustment of the Gabor filters’ bandwidth used in the encoding stage proves to be decisive in improving the accuracy for higher noise levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非合作条件下虹膜识别性能分析
提出了一种生物识别系统,利用人的虹膜来帮助确定个人的真实性。系统提取记录在模板中的虹膜的唯一特征。然后利用道格曼的方法将这些模板与其他虹膜进行比较。这遵循一个严格的程序(包括分割,规范化,编码和匹配),用户可以完全控制。通常在非最优或非合作条件下,识别阶段是至关重要的。在这项工作中,比较了利用有噪声虹膜数据集的相对精度。使用三种不同的分割和三种不同的编码方案,对每个人不同数量的虹膜图像、不同数量的个体、不同的噪声水平进行了性能分析。在编码阶段调整Gabor滤波器的带宽对提高高噪声水平下的精度起着决定性的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Key-Value Store using High Level Synthesis Flow for Securities Trading System Design and Analysis of Fractional-Order PID Controller and its variants for Nonlinear Process using Kalman Filter A CMOS Current Starved VCO for Energy Harvesting applications Iris Recognition Performance Analysis for Noncooperative Conditions Effect of Preprocessing on Performance of Neural Networks for Microscopy Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1