A. Uka, X. Polisi, J. Barthès, A. Halili, Florenc Skuka, N. Vrana
{"title":"Effect of Preprocessing on Performance of Neural Networks for Microscopy Image Classification","authors":"A. Uka, X. Polisi, J. Barthès, A. Halili, Florenc Skuka, N. Vrana","doi":"10.1109/iCCECE49321.2020.9231071","DOIUrl":null,"url":null,"abstract":"Medical field depends heavily on understanding and analyzing microscopy images of cells to better diagnose diseases, to evaluate the effectiveness of various medical treatments and to determine their health under stress. The amount of data that needs to be analyzed has increased and computer assisted analysis has become crucial as it would be very labor intensive for the medical practitioners otherwise. Many of the images are acquired using brightfield microscopy with no staining in order to avoid all the side effects. The unstained images have some associating challenges as they suffer from random nonuniform illumination, low contrast, relatively high transparency of the cytoplasm. The initial challenge of the large amount of data calls for the use of deep learning algorithms, whereas the other structural challenges call for the need to carefully train the convolutional neural networks in order to have a reliable system of evaluation. We have prepared a dataset of 20.000 images and we have tested the trained models on datasets with different number of images (N=300-8000). Here is this work we present classification of the cell health using convolutional neural networks and monitor the effect of the preprocessing steps on the overall accuracy.","PeriodicalId":413847,"journal":{"name":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCCECE49321.2020.9231071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Medical field depends heavily on understanding and analyzing microscopy images of cells to better diagnose diseases, to evaluate the effectiveness of various medical treatments and to determine their health under stress. The amount of data that needs to be analyzed has increased and computer assisted analysis has become crucial as it would be very labor intensive for the medical practitioners otherwise. Many of the images are acquired using brightfield microscopy with no staining in order to avoid all the side effects. The unstained images have some associating challenges as they suffer from random nonuniform illumination, low contrast, relatively high transparency of the cytoplasm. The initial challenge of the large amount of data calls for the use of deep learning algorithms, whereas the other structural challenges call for the need to carefully train the convolutional neural networks in order to have a reliable system of evaluation. We have prepared a dataset of 20.000 images and we have tested the trained models on datasets with different number of images (N=300-8000). Here is this work we present classification of the cell health using convolutional neural networks and monitor the effect of the preprocessing steps on the overall accuracy.