14.1 A 2.9TOPS/W deep convolutional neural network SoC in FD-SOI 28nm for intelligent embedded systems

{"title":"14.1 A 2.9TOPS/W deep convolutional neural network SoC in FD-SOI 28nm for intelligent embedded systems","authors":"","doi":"10.1109/ISSCC.2017.7870349","DOIUrl":null,"url":null,"abstract":"A booming number of computer vision, speech recognition, and signal processing applications, are increasingly benefiting from the use of deep convolutional neural networks (DCNN) stemming from the seminal work of Y. LeCun et al. [1] and others that led to winning the 2012 ImageNet Large Scale Visual Recognition Challenge with AlexNet [2], a DCNN significantly outperforming classical approaches for the first time. In order to deploy these technologies in mobile and wearable devices, hardware acceleration plays a critical role for real-time operation with very limited power consumption and with embedded memory overcoming the limitations of fully programmable solutions.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"132","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 132

Abstract

A booming number of computer vision, speech recognition, and signal processing applications, are increasingly benefiting from the use of deep convolutional neural networks (DCNN) stemming from the seminal work of Y. LeCun et al. [1] and others that led to winning the 2012 ImageNet Large Scale Visual Recognition Challenge with AlexNet [2], a DCNN significantly outperforming classical approaches for the first time. In order to deploy these technologies in mobile and wearable devices, hardware acceleration plays a critical role for real-time operation with very limited power consumption and with embedded memory overcoming the limitations of fully programmable solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
14.1用于智能嵌入式系统的FD-SOI 28nm 2.9TOPS/W深度卷积神经网络SoC
大量的计算机视觉、语音识别和信号处理应用越来越多地受益于深度卷积神经网络(DCNN)的使用,这源于Y. LeCun等人[1]和其他人的开创性工作,他们用AlexNet赢得了2012年ImageNet大规模视觉识别挑战赛[2],DCNN首次显著优于经典方法。为了在移动和可穿戴设备中部署这些技术,硬件加速在实时操作中发挥着至关重要的作用,功耗非常有限,嵌入式存储器克服了完全可编程解决方案的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
20.7 A 13.8µW binaural dual-microphone digital ANSI S1.11 filter bank for hearing aids with zero-short-circuit-current logic in 65nm CMOS 21.6 A 12nW always-on acoustic sensing and object recognition microsystem using frequency-domain feature extraction and SVM classification 7.4 A 915MHz asymmetric radio using Q-enhanced amplifier for a fully integrated 3×3×3mm3 wireless sensor node with 20m non-line-of-sight communication 13.5 A 0.35-to-2.6GHz multilevel outphasing transmitter with a digital interpolating phase modulator enabling up to 400MHz instantaneous bandwidth 5.1 A 5×80W 0.004% THD+N automotive multiphase Class-D audio amplifier with integrated low-latency ΔΣ ADCs for digitized feedback after the output filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1