A Multilabel Approach Using Binary Relevance and One-versus-Rest Least Squares Twin Support Vector Machine for Scene Classification

Divya Tomar, Sonali Agarwal
{"title":"A Multilabel Approach Using Binary Relevance and One-versus-Rest Least Squares Twin Support Vector Machine for Scene Classification","authors":"Divya Tomar, Sonali Agarwal","doi":"10.1109/CICT.2016.17","DOIUrl":null,"url":null,"abstract":"The classification of an image scene having multiple class labels produces significant challenge to the researchers. A semantic scene may be described by multiple objects or by multiple classes. For example, a beach scene may also contain mountain or buildings in the background. This research work proposes a multi-label scene classification model by using Binary Relevance (BR) based one-versus-rest Least Squares Twin Support Vector Machine (LSTSVM). Fifteen evaluation metrics have been used to analyze and compare the result of the proposed scene classification model with the six existing multi-label classifiers. Experimental results demonstrate the superiority and usefulness of the proposed model in the classification of multi-label scene over the existing multi-label approaches.","PeriodicalId":118509,"journal":{"name":"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Computational Intelligence & Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICT.2016.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The classification of an image scene having multiple class labels produces significant challenge to the researchers. A semantic scene may be described by multiple objects or by multiple classes. For example, a beach scene may also contain mountain or buildings in the background. This research work proposes a multi-label scene classification model by using Binary Relevance (BR) based one-versus-rest Least Squares Twin Support Vector Machine (LSTSVM). Fifteen evaluation metrics have been used to analyze and compare the result of the proposed scene classification model with the six existing multi-label classifiers. Experimental results demonstrate the superiority and usefulness of the proposed model in the classification of multi-label scene over the existing multi-label approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于二值相关和单对余最小二乘双支持向量机的场景分类方法
具有多个类标签的图像场景的分类给研究人员带来了很大的挑战。语义场景可以由多个对象或多个类来描述。例如,海滩场景也可能包含山或建筑物作为背景。本文提出了一种基于二值相关(BR)的单对rest最小二乘双支持向量机(LSTSVM)的多标签场景分类模型。使用15个评价指标对所提出的场景分类模型与现有的6种多标签分类器的分类结果进行分析和比较。实验结果证明了该模型在多标签场景分类方面的优越性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Based Image Retrieval Using Watershed Transformation Modified ZRP to Identify Cooperative Attacks Short Term Load Forecasting Using ANN and Multiple Linear Regression Prediction of Carbon Stock Available in Forest Using Naive Bayes Approach CAD for the Detection of Fetal Electrocardiogram through Neuro-Fuzzy Logic and Wavelets Systems for Telemetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1