Machine learning based performance development for diagnosis of breast cancer

B. Bektaş, Sebahattin Babur
{"title":"Machine learning based performance development for diagnosis of breast cancer","authors":"B. Bektaş, Sebahattin Babur","doi":"10.1109/TIPTEKNO.2016.7863129","DOIUrl":null,"url":null,"abstract":"Breast cancer is prevalent among women and develops from breast tissue. Early diagnosis and accurate treatment is vital to increase the rate of survival. Identification of genetic factors with microarray technology can make significant contributions to diagnosis and treatment process. In this study, several machine learning algorithms are used for Diagnosis of Breast Cancer and their classification performances are compared with each other. In addition, the active genes in breast cancer are identified by attribute selection methods and the conducted study show success rate 90,72 % with 139 feature.","PeriodicalId":431660,"journal":{"name":"2016 Medical Technologies National Congress (TIPTEKNO)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Medical Technologies National Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO.2016.7863129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Breast cancer is prevalent among women and develops from breast tissue. Early diagnosis and accurate treatment is vital to increase the rate of survival. Identification of genetic factors with microarray technology can make significant contributions to diagnosis and treatment process. In this study, several machine learning algorithms are used for Diagnosis of Breast Cancer and their classification performances are compared with each other. In addition, the active genes in breast cancer are identified by attribute selection methods and the conducted study show success rate 90,72 % with 139 feature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的乳腺癌诊断性能开发
乳腺癌在女性中很普遍,由乳房组织发展而来。早期诊断和准确治疗对提高生存率至关重要。利用微阵列技术鉴定遗传因素可以为诊断和治疗过程做出重大贡献。本研究将几种机器学习算法用于乳腺癌的诊断,并对它们的分类性能进行了比较。此外,利用属性选择方法对乳腺癌中的活性基因进行了识别,研究结果表明,139个特征的成功率为90%,72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of prosthetic hand simulator Development of clinical engineering units and evaluation of the organization in public hospitals Fractal dimension analysis of cerebellar grey matter in patients with Chiary Malformation type-I Surgical operation simulation based on virtual reality Design of coils driven by pulsed electromagnetic field generator and the effect of wound healing in rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1