{"title":"Electronic state transition in cooperatively interacting point-defects in semiconductor crystals","authors":"M. A. Mohamed, B. Majlis, M. Ani","doi":"10.1109/SMELEC.2014.6920844","DOIUrl":null,"url":null,"abstract":"Electron state transition of deep level point defects in a semiconductor crystal was studied. Low-temperature grown GaAs produced excess antisite As (AsGa) which produces localized spin when doped with Be. A nearly abrupt decrease of 1.7% of the resistance is detected at a temperature around 4 K which is consistent with abrupt decrease of magnetization. These observations are explained as a result of cooperative transition of electron states of AsGa defects. First-principal calculations of the electron state of an AsGa atom with a shallow acceptor Be show that at the transition an AsGa+ ion is displaced to the interstitial site and becomes a neutral atom and finally results in formation of a hole producing enhancement in conductivity.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2014.6920844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electron state transition of deep level point defects in a semiconductor crystal was studied. Low-temperature grown GaAs produced excess antisite As (AsGa) which produces localized spin when doped with Be. A nearly abrupt decrease of 1.7% of the resistance is detected at a temperature around 4 K which is consistent with abrupt decrease of magnetization. These observations are explained as a result of cooperative transition of electron states of AsGa defects. First-principal calculations of the electron state of an AsGa atom with a shallow acceptor Be show that at the transition an AsGa+ ion is displaced to the interstitial site and becomes a neutral atom and finally results in formation of a hole producing enhancement in conductivity.