BIT-Xiaomi’s System for AutoSimTrans 2022

Mengge Liu, Xiang Li, Bao Chen, Yanzhi Tian, Tianwei Lan, Silin Li, Yuhang Guo, Jian Luan, Bin Wang
{"title":"BIT-Xiaomi’s System for AutoSimTrans 2022","authors":"Mengge Liu, Xiang Li, Bao Chen, Yanzhi Tian, Tianwei Lan, Silin Li, Yuhang Guo, Jian Luan, Bin Wang","doi":"10.18653/v1/2022.autosimtrans-1.6","DOIUrl":null,"url":null,"abstract":"This system paper describes the BIT-Xiaomi simultaneous translation system for Autosimtrans 2022 simultaneous translation challenge. We participated in three tracks: the Zh-En text-to-text track, the Zh-En audio-to-text track and the En-Es test-to-text track. In our system, wait-k is employed to train prefix-to-prefix translation models. We integrate streaming chunking to detect boundaries as the source streaming read in. We further improve our system with data selection, data-augmentation and R-drop training methods. Results show that our wait-k implementation outperforms organizer’s baseline by 8 BLEU score at most, and our proposed streaming chunking method further improves about 2 BLEU in low latency regime.","PeriodicalId":444422,"journal":{"name":"Proceedings of the Third Workshop on Automatic Simultaneous Translation","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third Workshop on Automatic Simultaneous Translation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.autosimtrans-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This system paper describes the BIT-Xiaomi simultaneous translation system for Autosimtrans 2022 simultaneous translation challenge. We participated in three tracks: the Zh-En text-to-text track, the Zh-En audio-to-text track and the En-Es test-to-text track. In our system, wait-k is employed to train prefix-to-prefix translation models. We integrate streaming chunking to detect boundaries as the source streaming read in. We further improve our system with data selection, data-augmentation and R-drop training methods. Results show that our wait-k implementation outperforms organizer’s baseline by 8 BLEU score at most, and our proposed streaming chunking method further improves about 2 BLEU in low latency regime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
bit -小米的AutoSimTrans系统2022
本系统论文介绍了bit -小米同声翻译系统在Autosimtrans 2022同声翻译挑战赛中的应用。我们参与了三个轨道:zhen文本到文本轨道,zhen音频到文本轨道和En-Es测试到文本轨道。在我们的系统中,使用wait-k来训练前缀到前缀的翻译模型。我们集成了流分块来检测源流读入时的边界。我们通过数据选择、数据增强和R-drop训练方法进一步改进我们的系统。结果表明,我们的wait-k实现最多比组织者的基线高出8个BLEU分数,并且我们提出的流分块方法在低延迟状态下进一步提高了约2个BLEU分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
End-to-End Simultaneous Speech Translation with Pretraining and Distillation: Huawei Noah’s System for AutoSimTranS 2022 Findings of the Third Workshop on Automatic Simultaneous Translation BIT-Xiaomi’s System for AutoSimTrans 2022 System Description on Automatic Simultaneous Translation Workshop System Description on Third Automatic Simultaneous Translation Workshop
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1