{"title":"Early-stage power grid design: Extraction, modeling and optimization","authors":"Cheng Zhuo, H. Gan, W. Shih","doi":"10.1145/2593069.2593129","DOIUrl":null,"url":null,"abstract":"Many prior works have discussed the power grid design and optimization in the post-layout stage, when design change is inevitably expensive and difficult. In contrast, during the early stage of a development cycle, designers have more flexibility to improve the design quality. However, there are several fundamental challenges at early-stage when design database is NOT complete, including extraction, modeling and optimization. This paper tackles these fundamental issues of early-stage power grid design. The proposed methods have been silicon-validated on 32nm on-market chips and successfully applied to a 22nm design for its early stage power grid design. The findings from such practices reveal that, for sub-32nm chips, intrinsic on-die capacitance and power gate scheme may have more significant impact than expected on power integrity, and need to be well addressed at early stage.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Many prior works have discussed the power grid design and optimization in the post-layout stage, when design change is inevitably expensive and difficult. In contrast, during the early stage of a development cycle, designers have more flexibility to improve the design quality. However, there are several fundamental challenges at early-stage when design database is NOT complete, including extraction, modeling and optimization. This paper tackles these fundamental issues of early-stage power grid design. The proposed methods have been silicon-validated on 32nm on-market chips and successfully applied to a 22nm design for its early stage power grid design. The findings from such practices reveal that, for sub-32nm chips, intrinsic on-die capacitance and power gate scheme may have more significant impact than expected on power integrity, and need to be well addressed at early stage.