Tabular Functional Block Detection with Embedding-based Agglomerative Cell Clustering

Kexuan Sun, Fei Wang, Muhao Chen, J. Pujara
{"title":"Tabular Functional Block Detection with Embedding-based Agglomerative Cell Clustering","authors":"Kexuan Sun, Fei Wang, Muhao Chen, J. Pujara","doi":"10.1145/3459637.3482484","DOIUrl":null,"url":null,"abstract":"Tables are a widely-used format for data curation. The diversity of domains, layouts, and content of tables makes knowledge extraction challenging. Understanding table layouts is an important step for automatically harvesting knowledge from tabular data. Since table cells are spatially organized into regions, correctly identifying such regions and inferring their functional roles, referred to as functional block detection, is a critical part of understanding table layouts. Earlier functional block detection approaches fail to leverage spatial relationships and higher-level structure, either depending on cell-level predictions or relying on data types as signals for identifying blocks. In this paper, we introduce a flexible functional block detection method by applying agglomerative clustering techniques which merge smaller blocks into larger blocks using two merging strategies. Our proposed method uses cell embeddings with a customized dissimilarity function which utilizes local and margin distances, as well as block coherence metrics to capture cell, block, and table scoped features. Given the diversity of tables in real-world corpora, we also introduce a sampling-based approach for automatically tuning distance thresholds for each table. Experimental results show that our method improves over the earlier state-of-the-art method in terms of several evaluation metrics.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tables are a widely-used format for data curation. The diversity of domains, layouts, and content of tables makes knowledge extraction challenging. Understanding table layouts is an important step for automatically harvesting knowledge from tabular data. Since table cells are spatially organized into regions, correctly identifying such regions and inferring their functional roles, referred to as functional block detection, is a critical part of understanding table layouts. Earlier functional block detection approaches fail to leverage spatial relationships and higher-level structure, either depending on cell-level predictions or relying on data types as signals for identifying blocks. In this paper, we introduce a flexible functional block detection method by applying agglomerative clustering techniques which merge smaller blocks into larger blocks using two merging strategies. Our proposed method uses cell embeddings with a customized dissimilarity function which utilizes local and margin distances, as well as block coherence metrics to capture cell, block, and table scoped features. Given the diversity of tables in real-world corpora, we also introduce a sampling-based approach for automatically tuning distance thresholds for each table. Experimental results show that our method improves over the earlier state-of-the-art method in terms of several evaluation metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于嵌入的聚集细胞聚类的表功能块检测
表是一种广泛使用的数据管理格式。表的领域、布局和内容的多样性使得知识提取具有挑战性。理解表格布局是从表格数据中自动获取知识的重要步骤。由于表单元格在空间上被组织成区域,因此正确识别这些区域并推断它们的功能角色(称为功能块检测)是理解表布局的关键部分。早期的功能块检测方法无法利用空间关系和高层结构,要么依赖于单元级预测,要么依赖于数据类型作为识别块的信号。在本文中,我们引入了一种灵活的功能块检测方法,该方法采用聚合聚类技术,使用两种合并策略将小块合并成大块。我们提出的方法使用具有自定义不相似函数的单元嵌入,该函数利用局部和边缘距离以及块相干度量来捕获单元、块和表范围的特征。考虑到真实语料库中表的多样性,我们还引入了一种基于采样的方法来自动调整每个表的距离阈值。实验结果表明,我们的方法在几个评价指标方面比早期的最先进的方法有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UltraGCN Fine and Coarse Granular Argument Classification before Clustering CHASE Crawler Detection in Location-Based Services Using Attributed Action Net Failure Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1