Simulation Study of a Flat Plate Solar Collector Influence of the Mixture Air Flow

Si Chaib Amel, Aliane Khaled
{"title":"Simulation Study of a Flat Plate Solar Collector Influence of the Mixture Air Flow","authors":"Si Chaib Amel, Aliane Khaled","doi":"10.18280/psees.050103","DOIUrl":null,"url":null,"abstract":"Due to their simple composition, flat plate solar collectors are constantly applied to various fields. As a result, thermo-fluid performance is continuously improving. The direct heat losses in a flat plate solar collector depend essentially on the absorber-glazing clearance. The increase in this clearance leads to an increase in convective losses and its reduction reduces the air flow to be transported. A solution is envisaged by the present subject, which consists in carrying out a new design of an absorber for those with baffles or part of the heat transfer fluid circulating inside. The work consists in optimizing the annular clearance or in circulating the heat transfer fluid because this clearance is made to the detriment of the thickness of the absorber, source of thermal energy of the solar collector. The optimum distance is then sought, which ensures a homogeneous mixture between the current of the main fluid flowing between the baffles on the one hand and the current of the secondary fluid flows in the annular clearance of the absorber on the other hand.","PeriodicalId":263430,"journal":{"name":"Progress in Solar Energy and Engineering Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solar Energy and Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/psees.050103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their simple composition, flat plate solar collectors are constantly applied to various fields. As a result, thermo-fluid performance is continuously improving. The direct heat losses in a flat plate solar collector depend essentially on the absorber-glazing clearance. The increase in this clearance leads to an increase in convective losses and its reduction reduces the air flow to be transported. A solution is envisaged by the present subject, which consists in carrying out a new design of an absorber for those with baffles or part of the heat transfer fluid circulating inside. The work consists in optimizing the annular clearance or in circulating the heat transfer fluid because this clearance is made to the detriment of the thickness of the absorber, source of thermal energy of the solar collector. The optimum distance is then sought, which ensures a homogeneous mixture between the current of the main fluid flowing between the baffles on the one hand and the current of the secondary fluid flows in the annular clearance of the absorber on the other hand.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合气流对平板太阳能集热器影响的模拟研究
由于其组成简单,平板太阳能集热器不断地应用于各个领域。因此,热流体性能不断提高。平板太阳能集热器的直接热损失主要取决于吸收体与玻璃的间隙。这个间隙的增加导致对流损失的增加,而它的减少减少了要输送的空气流量。本课题设想了一种解决办法,它包括为那些有挡板或部分传热流体在内部循环的吸收器进行一种新的设计。这项工作包括优化环空间隙或循环传热流体,因为这种间隙会损害吸收器的厚度,太阳能集热器的热能来源。然后寻求最佳距离,以确保在挡板之间流动的主流体的电流与在吸收器环形间隙中流动的二次流体的电流之间的均匀混合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation Study of a Flat Plate Solar Collector Influence of the Mixture Air Flow Study of Fluid-Thermodynamic Transfers in Solar Ponds: Theoretical Approach Thermal Performance Enhancement of Asphalt Solar Collector by Using Extended Surfaces Matlab/Stateflow P&O and ICMPPT Implementation for PEM Fuel Cell Power System Proposal a New Energy Certification with Multi-Criteria Analysis of Strategies Passives of Tertiary Building in Arid Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1