{"title":"Fundamental CFD Study on the Hydrodynamic Performance of the DARPA SUBOFF Submarine","authors":"Kenshiro Takahashi, P. Sahoo","doi":"10.1115/omae2019-96190","DOIUrl":null,"url":null,"abstract":"\n This study attempts to examine the potential for computational fluid dynamics (CFD) as an estimation tool of the hydrodynamic performance of submarines. The DARPA SUBOFF model is adopted as a benchmark because of its availability of experimental data for validation. The computational modeling is based on the Reynolds Average Navier Stokes (RANS) equations solved by a finite volume method. Verification and validation of the straight-ahead resistance and the forces and moment exerted on the hull in steady translation and turn with a drift angle were conducted in accordance with the published methodology and procedure. The process to have determined the computational setups is described. Furthermore, the computational results as a function of velocity and drift angle are presented and compared with available experimental data. In conclusion, the present CFD method can be used as an estimation tool for the straight-ahead resistance at various velocities in model scale for multiple configurations.","PeriodicalId":345141,"journal":{"name":"Volume 2: CFD and FSI","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: CFD and FSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This study attempts to examine the potential for computational fluid dynamics (CFD) as an estimation tool of the hydrodynamic performance of submarines. The DARPA SUBOFF model is adopted as a benchmark because of its availability of experimental data for validation. The computational modeling is based on the Reynolds Average Navier Stokes (RANS) equations solved by a finite volume method. Verification and validation of the straight-ahead resistance and the forces and moment exerted on the hull in steady translation and turn with a drift angle were conducted in accordance with the published methodology and procedure. The process to have determined the computational setups is described. Furthermore, the computational results as a function of velocity and drift angle are presented and compared with available experimental data. In conclusion, the present CFD method can be used as an estimation tool for the straight-ahead resistance at various velocities in model scale for multiple configurations.