DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang
{"title":"DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks","authors":"Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang","doi":"10.1145/3336191.3371845","DOIUrl":null,"url":null,"abstract":"Learning node representations in graphs is important for many applications such as link prediction, node classification, and community detection. Existing graph representation learning methods primarily target static graphs while many real-world graphs evolve over time. Complex time-varying graph structures make it challenging to learn informative node representations over time. We present Dynamic Self-Attention Network (DySAT), a novel neural architecture that learns node representations to capture dynamic graph structural evolution. Specifically, DySAT computes node representations through joint self-attention along the two dimensions of structural neighborhood and temporal dynamics. Compared with state-of-the-art recurrent methods modeling graph evolution, dynamic self-attention is efficient, while achieving consistently superior performance. We conduct link prediction experiments on two graph types: communication networks and bipartite rating networks. Experimental results demonstrate significant performance gains for DySAT over several state-of-the-art graph embedding baselines, in both single and multi-step link prediction tasks. Furthermore, our ablation study validates the effectiveness of jointly modeling structural and temporal self-attention.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"317","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 317

Abstract

Learning node representations in graphs is important for many applications such as link prediction, node classification, and community detection. Existing graph representation learning methods primarily target static graphs while many real-world graphs evolve over time. Complex time-varying graph structures make it challenging to learn informative node representations over time. We present Dynamic Self-Attention Network (DySAT), a novel neural architecture that learns node representations to capture dynamic graph structural evolution. Specifically, DySAT computes node representations through joint self-attention along the two dimensions of structural neighborhood and temporal dynamics. Compared with state-of-the-art recurrent methods modeling graph evolution, dynamic self-attention is efficient, while achieving consistently superior performance. We conduct link prediction experiments on two graph types: communication networks and bipartite rating networks. Experimental results demonstrate significant performance gains for DySAT over several state-of-the-art graph embedding baselines, in both single and multi-step link prediction tasks. Furthermore, our ablation study validates the effectiveness of jointly modeling structural and temporal self-attention.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自注意网络的动态图的深度神经表征学习
学习图中的节点表示对于链接预测、节点分类和社区检测等许多应用都很重要。现有的图表示学习方法主要针对静态图,而许多现实世界的图随着时间的推移而发展。复杂的时变图结构使得随着时间的推移学习信息节点表示具有挑战性。我们提出了动态自注意网络(DySAT),这是一种新的神经结构,通过学习节点表示来捕捉动态图结构的演变。具体来说,DySAT通过沿结构邻域和时间动态两个维度的联合自关注来计算节点表示。与最先进的递归图演化建模方法相比,动态自关注是高效的,同时获得了一贯的优越性能。我们对两种图类型:通信网络和二部评级网络进行了链路预测实验。实验结果表明,在单步和多步链路预测任务中,DySAT在几个最先进的图嵌入基线上的性能都有显著提高。此外,我们的消融研究验证了结构和时间自我注意联合建模的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1