From 5G Sniffing to Harvesting Leakages of Privacy-Preserving Messengers

Norbert Ludant, Pieter Robyns, G. Noubir
{"title":"From 5G Sniffing to Harvesting Leakages of Privacy-Preserving Messengers","authors":"Norbert Ludant, Pieter Robyns, G. Noubir","doi":"10.1109/SP46215.2023.10179353","DOIUrl":null,"url":null,"abstract":"We present the first open-source tool capable of efficiently sniffing 5G control channels, 5GSniffer and demonstrate its potential to conduct attacks on users privacy. 5GSniffer builds on our analysis of the 5G RAN control channel exposing side-channel leakage. We note that decoding the 5G control channels is significantly more challenging than in LTE, since part of the information necessary for decoding is provided to the UEs over encrypted channels. We devise a set of techniques to achieve real-time control channels sniffing (over three orders of magnitude faster than brute-forcing). This enables, among other things, to retrieve the Radio Network Temporary Identifiers (RNTIs) of all users in a cell, and perform traffic analysis. To illustrate the potential of our sniffer, we analyse two privacy-focused messengers, Signal and Telegram. We identify privacy leaks that can be exploited to generate stealthy traffic to a target user. When combined with 5GSniffer, it enables stealthy exposure of the presence of a target user in a given location (solely based on their phone number), by linking the phone number to the RNTI. It also enables traffic analysis of the target user. We evaluate the attacks and our sniffer, demonstrating nearly 100% accuracy within 30 seconds of attack initiation.","PeriodicalId":439989,"journal":{"name":"2023 IEEE Symposium on Security and Privacy (SP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP46215.2023.10179353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present the first open-source tool capable of efficiently sniffing 5G control channels, 5GSniffer and demonstrate its potential to conduct attacks on users privacy. 5GSniffer builds on our analysis of the 5G RAN control channel exposing side-channel leakage. We note that decoding the 5G control channels is significantly more challenging than in LTE, since part of the information necessary for decoding is provided to the UEs over encrypted channels. We devise a set of techniques to achieve real-time control channels sniffing (over three orders of magnitude faster than brute-forcing). This enables, among other things, to retrieve the Radio Network Temporary Identifiers (RNTIs) of all users in a cell, and perform traffic analysis. To illustrate the potential of our sniffer, we analyse two privacy-focused messengers, Signal and Telegram. We identify privacy leaks that can be exploited to generate stealthy traffic to a target user. When combined with 5GSniffer, it enables stealthy exposure of the presence of a target user in a given location (solely based on their phone number), by linking the phone number to the RNTI. It also enables traffic analysis of the target user. We evaluate the attacks and our sniffer, demonstrating nearly 100% accuracy within 30 seconds of attack initiation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从5G嗅探到收集隐私保护信使的泄漏
我们展示了第一个能够有效嗅探5G控制通道的开源工具,5G嗅探器,并展示了其对用户隐私进行攻击的潜力。5G嗅探器建立在我们对暴露侧信道泄漏的5G RAN控制通道的分析之上。我们注意到,解码5G控制信道比LTE更具挑战性,因为解码所需的部分信息是通过加密信道提供给终端的。我们设计了一套技术来实现实时控制通道嗅探(比暴力破解快三个数量级)。这使我们能够检索单元中所有用户的无线网络临时标识符(rnti),并执行流量分析。为了说明我们的嗅探器的潜力,我们分析了两个以隐私为重点的信使,Signal和Telegram。我们识别可被利用的隐私泄露,以生成针对目标用户的秘密流量。当与5GSniffer结合使用时,通过将电话号码链接到RNTI,它可以在给定位置(仅基于他们的电话号码)隐秘地暴露目标用户的存在。它还可以对目标用户进行流量分析。我们评估了攻击和我们的嗅探器,在攻击开始的30秒内显示出接近100%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TeSec: Accurate Server-side Attack Investigation for Web Applications PLA-LiDAR: Physical Laser Attacks against LiDAR-based 3D Object Detection in Autonomous Vehicle One Key to Rule Them All: Secure Group Pairing for Heterogeneous IoT Devices SoK: Cryptographic Neural-Network Computation SoK: A Critical Evaluation of Efficient Website Fingerprinting Defenses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1