Reconstructing and Analyzing the Transnational Human Trafficking Network

Mitchell Goist, T. H. Chen, C. Boylan
{"title":"Reconstructing and Analyzing the Transnational Human Trafficking Network","authors":"Mitchell Goist, T. H. Chen, C. Boylan","doi":"10.1145/3341161.3342879","DOIUrl":null,"url":null,"abstract":"Human trafficking is a global problem which impacts a countless number of individuals every year. In this project, we demonstrate how machine learning techniques and qualitative reports can be used to generate new valuable quantitative information on human trafficking. Our approach generates original data, which we release publicly, on the directed trafficking relationship between countries that can be used to reconstruct the global transnational human trafficking network. Using this new data and statistical network analysis, we identify the most influential countries in the network and analyze how different factors and network structures influence transnational trafficking. Most importantly, our methods and data can be employed by policymakers, non-governmental organizations, and researchers to help combat the problem of human trafficking.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3342879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Human trafficking is a global problem which impacts a countless number of individuals every year. In this project, we demonstrate how machine learning techniques and qualitative reports can be used to generate new valuable quantitative information on human trafficking. Our approach generates original data, which we release publicly, on the directed trafficking relationship between countries that can be used to reconstruct the global transnational human trafficking network. Using this new data and statistical network analysis, we identify the most influential countries in the network and analyze how different factors and network structures influence transnational trafficking. Most importantly, our methods and data can be employed by policymakers, non-governmental organizations, and researchers to help combat the problem of human trafficking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨国人口贩运网络的重构与分析
人口贩运是一个全球性问题,每年影响着无数人。在这个项目中,我们展示了如何使用机器学习技术和定性报告来生成关于人口贩运的新的有价值的定量信息。我们的方法生成了原始数据,并将其公开发布,这些数据是关于国家间定向贩运关系的,可用于重建全球跨国人口贩运网络。利用这一新的数据和统计网络分析,我们确定了网络中最具影响力的国家,并分析了不同因素和网络结构如何影响跨国贩运。最重要的是,政策制定者、非政府组织和研究人员可以利用我们的方法和数据来帮助打击人口贩运问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural-Brane: An inductive approach for attributed network embedding Customer Recommendation Based on Profile Matching and Customized Campaigns in On-Line Social Networks Characterizing and Detecting Livestreaming Chatbots Two Decades of Network Science: as seen through the co-authorship network of network scientists Show me your friends, and I will tell you whom you vote for: Predicting voting behavior in social networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1