Localizing mobile RF targets using multiple unmanned aerial vehicles with heterogeneous sensing capabilities

D. Pack, G. York, G. Toussaint
{"title":"Localizing mobile RF targets using multiple unmanned aerial vehicles with heterogeneous sensing capabilities","authors":"D. Pack, G. York, G. Toussaint","doi":"10.1109/ICNSC.2005.1461264","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of locating a mobile radio frequency (RF) target using multiple unmanned aerial vehicles (UAVs) equipped with sensors with varying accuracies. We investigate the localization task performance as we vary (1) the configuration of multiple UAVs (sensor locations), (2) the type of sensors onboard the UAVs, and (3) the sensor sequence. We use the well known optimal recursive estimation techniques (Kalman filtering) to combine captured sensor values from multiple UAVs and to investigate sensor scheduling issues to minimize the target location error. We present our findings in the form of simulation results.","PeriodicalId":313251,"journal":{"name":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC.2005.1461264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper, we consider the problem of locating a mobile radio frequency (RF) target using multiple unmanned aerial vehicles (UAVs) equipped with sensors with varying accuracies. We investigate the localization task performance as we vary (1) the configuration of multiple UAVs (sensor locations), (2) the type of sensors onboard the UAVs, and (3) the sensor sequence. We use the well known optimal recursive estimation techniques (Kalman filtering) to combine captured sensor values from multiple UAVs and to investigate sensor scheduling issues to minimize the target location error. We present our findings in the form of simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用具有异构传感能力的多架无人机定位移动射频目标
在本文中,我们考虑使用多架配备不同精度传感器的无人机定位移动射频(RF)目标的问题。当我们改变(1)多架无人机的配置(传感器位置),(2)无人机上的传感器类型,以及(3)传感器序列时,我们研究了定位任务的性能。我们使用著名的最优递归估计技术(卡尔曼滤波)来组合从多架无人机捕获的传感器值,并研究传感器调度问题,以最小化目标定位误差。我们以模拟结果的形式呈现我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic robust stability analysis for Markovian jumping neural networks with time delays Modeling and performance evaluation of collision resolution algorithms for LonWorks control networks The organization model research of SM crowd Forced and constrained consensus among cooperating agents Routing in stochastic networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1