Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network

M. Khoiruddin, A. Junaidi, W. Saputra
{"title":"Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network","authors":"M. Khoiruddin, A. Junaidi, W. Saputra","doi":"10.20895/dinda.v2i1.341","DOIUrl":null,"url":null,"abstract":"Rice (Oryza sativa) is a grain that comes in third place among all grains after corn and wheat. 80 percent of Indonesians eat rice as a staple diet, especially in Southeast Asian countries, but the International Rice Research Institute (IRRI) reports that farmers lose 37 percent of their rice crops each year owing to pests and illnesses. Based on this study, it is critical to investigate the detection of rice pests and illnesses. Using the Convolution Neural Network (CNN) technique, an automatic classification system to identify and predict plant illnesses has been developed. A study titled Classification of Rice Leaf Diseases was undertaken by the author. The CNN Algorithm is being used to help farmers learn how to combat rice leaf diseases. Bacterial leaf blight, Rice blast, and Rice tungro virus were among the rice leaf types classified in this study. There are 6000 datasets in all, with 80% of them being training data, 10% being validation data, and 10% being testing data. The accuracy of the results obtained for epochs 25, 50, 75, and 100 varies. The best training accuracy results come from epoch 100, which has a 98% accuracy rate, and testing using a confusion matrix has a 98% accuracy rate. In diagnosing rice leaf diseases, the Convolutional Neural Network (CNN) algorithm delivers great accuracy.","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20895/dinda.v2i1.341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Rice (Oryza sativa) is a grain that comes in third place among all grains after corn and wheat. 80 percent of Indonesians eat rice as a staple diet, especially in Southeast Asian countries, but the International Rice Research Institute (IRRI) reports that farmers lose 37 percent of their rice crops each year owing to pests and illnesses. Based on this study, it is critical to investigate the detection of rice pests and illnesses. Using the Convolution Neural Network (CNN) technique, an automatic classification system to identify and predict plant illnesses has been developed. A study titled Classification of Rice Leaf Diseases was undertaken by the author. The CNN Algorithm is being used to help farmers learn how to combat rice leaf diseases. Bacterial leaf blight, Rice blast, and Rice tungro virus were among the rice leaf types classified in this study. There are 6000 datasets in all, with 80% of them being training data, 10% being validation data, and 10% being testing data. The accuracy of the results obtained for epochs 25, 50, 75, and 100 varies. The best training accuracy results come from epoch 100, which has a 98% accuracy rate, and testing using a confusion matrix has a 98% accuracy rate. In diagnosing rice leaf diseases, the Convolutional Neural Network (CNN) algorithm delivers great accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水稻(Oryza sativa)在所有谷物中排名第三,仅次于玉米和小麦。80%的印尼人以大米为主食,尤其是在东南亚国家,但国际水稻研究所(IRRI)报告称,由于病虫害,农民每年损失37%的水稻作物。在此基础上,开展水稻病虫害检测研究具有重要意义。利用卷积神经网络(CNN)技术,开发了一种植物病害识别和预测的自动分类系统。作者进行了《水稻叶片病害分类》的研究。CNN算法被用来帮助农民学习如何对抗水稻叶片疾病。本研究分类的水稻叶片类型包括细菌性叶枯病、稻瘟病和tungro病毒。总共有6000个数据集,其中80%是训练数据,10%是验证数据,10%是测试数据。在第25、50、75和100期得到的结果的准确性各不相同。最好的训练准确度结果来自epoch 100,其准确率为98%,使用混淆矩阵进行测试的准确率为98%。在诊断水稻叶片病害方面,卷积神经网络(CNN)算法具有很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of Sleep Disorders Using Random Forest on Sleep Health and Lifestyle Dataset Classification of Drug Types using Decision Tree Algorithm Dominant Requirements for Student Graduation in the Faculty of Informatics using the C4.5 Algorithm Minimalist DCT-based Depthwise Separable Convolutional Neural Network Approach for Tangut Script The Descriptive Analysis of Perceptions of ITTP Data Science Students regarding Face-to-Face Learning Plans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1