Convolutional Dictionary Learning Using Global Matching Tracking (CDL-GMT): Application to Visible-Infrared Image Fusion

Chengfang Zhang
{"title":"Convolutional Dictionary Learning Using Global Matching Tracking (CDL-GMT): Application to Visible-Infrared Image Fusion","authors":"Chengfang Zhang","doi":"10.1109/ICDSBA51020.2020.00081","DOIUrl":null,"url":null,"abstract":"The traditional convolutional dictionary-learning algorithm not only realizes the global sparse representation by imposing constraints on the image □0 or □1 norm, but also allows all possible movements of the local dictionary. However, selected atoms may be concentrated in certain areas of the image, while other atoms may be very sparse. Therefore, when using a traditionally-learned convolution dictionary, global sparseness alone is not sufficient to represent the entire image structure, and the resulting fusion image suffers from partial detail damage. For the above-mentioned convolutional sparse coding problem, this paper presents a greedy strategy based on the constraint 1_(\"0,\" ∞) problem to obtain a convolution dictionary(CDL-GMT), and applies the learned convolutional sparse dictionary to infrared and visible-light image fusion. This method attempts to impose constraints on sparsity locally, while considering the global structure. Experimental results prove the method to be superior to others in subjective and objective evaluation.","PeriodicalId":354742,"journal":{"name":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSBA51020.2020.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The traditional convolutional dictionary-learning algorithm not only realizes the global sparse representation by imposing constraints on the image □0 or □1 norm, but also allows all possible movements of the local dictionary. However, selected atoms may be concentrated in certain areas of the image, while other atoms may be very sparse. Therefore, when using a traditionally-learned convolution dictionary, global sparseness alone is not sufficient to represent the entire image structure, and the resulting fusion image suffers from partial detail damage. For the above-mentioned convolutional sparse coding problem, this paper presents a greedy strategy based on the constraint 1_("0," ∞) problem to obtain a convolution dictionary(CDL-GMT), and applies the learned convolutional sparse dictionary to infrared and visible-light image fusion. This method attempts to impose constraints on sparsity locally, while considering the global structure. Experimental results prove the method to be superior to others in subjective and objective evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全局匹配跟踪(CDL-GMT)的卷积字典学习:在可见-红外图像融合中的应用
传统的卷积字典学习算法不仅通过对图像□0范数或□1范数施加约束来实现全局稀疏表示,而且允许局部字典的所有可能运动。然而,选定的原子可能集中在图像的某些区域,而其他原子可能非常稀疏。因此,当使用传统学习的卷积字典时,仅全局稀疏性不足以表示整个图像结构,并且得到的融合图像会受到部分细节的损害。针对上述卷积稀疏编码问题,本文提出了一种基于约束1_(“0,”∞)问题的贪心策略来获得卷积字典(CDL-GMT),并将学习到的卷积稀疏字典应用于红外和可见光图像融合。该方法试图在考虑全局结构的同时,对局部稀疏性施加约束。实验结果表明,该方法在主客观评价方面均优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Driving Engine of Quantitative Trading Strategy Based on Event Processing A Composite 3D-2D Visual Surface Defects Inspection Method for Steel Bar Intelligent Manufacturing Analysis of the Synergetic Development Degree of the Digital Economy and Green Innovation Research on Heterogenous Fleet Dynamic Vehicle Rounting Problem Based on Memetic Algorithm Research on Loading and Unloading Path Optimization for AGV at Automatic Container Terminal Based on Improved Particle Swarm Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1