Complemental theory for vertical transport in semiconductor superlattices

M. Morifuji, A. Sakamoto, C. Hamaguchi
{"title":"Complemental theory for vertical transport in semiconductor superlattices","authors":"M. Morifuji, A. Sakamoto, C. Hamaguchi","doi":"10.1109/IWCE.1998.742695","DOIUrl":null,"url":null,"abstract":"In a superlattice, it is known that localized electronic states are formed due to an electric field applied along the growth axis. Therefore, an electron changes its nature from a wave to a particle. Such a change of electronic nature imposes on us to apply different frameworks of transport theory depending on the strength of electric field. In this paper, we show that such a complemental nature of electrons can be described in a unified way by considering electronic acceleration during a scattering event. Based on the unified picture and by means of the Monte Carlo simulation, we calculate drift velocities of electrons in a superlattice. Crossover between band-transport in low fields and hopping-transport in high fields is studied and discussed.","PeriodicalId":357304,"journal":{"name":"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.1998.742695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a superlattice, it is known that localized electronic states are formed due to an electric field applied along the growth axis. Therefore, an electron changes its nature from a wave to a particle. Such a change of electronic nature imposes on us to apply different frameworks of transport theory depending on the strength of electric field. In this paper, we show that such a complemental nature of electrons can be described in a unified way by considering electronic acceleration during a scattering event. Based on the unified picture and by means of the Monte Carlo simulation, we calculate drift velocities of electrons in a superlattice. Crossover between band-transport in low fields and hopping-transport in high fields is studied and discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半导体超晶格中垂直输运的互补理论
在超晶格中,已知局域电子态是由于沿生长轴施加电场而形成的。因此,电子从波的性质转变为粒子的性质。这种电子性质的变化迫使我们根据电场的强度应用不同的输运理论框架。在本文中,我们证明了电子的这种互补性质可以用一种统一的方式来描述,通过考虑散射事件中的电子加速度。基于统一图像,通过蒙特卡罗模拟,我们计算了电子在超晶格中的漂移速度。对低场带输运与高场跳输运的交叉问题进行了研究和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrons in semiconductors: how big are they? Wigner paths and boundary conditions for electron transport in open systems with electron-phonon interaction Two-dimensional simulation of negative resistance effects using quantum moment equations Simulation analysis of impurity profile extraction by SCM Physical mechanism of current fluctuation under ultra-small device structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1