Daily visitor volume forecasts for Expo 2010 Shanghai China

Yang Zhang
{"title":"Daily visitor volume forecasts for Expo 2010 Shanghai China","authors":"Yang Zhang","doi":"10.1109/ITSC.2011.6082994","DOIUrl":null,"url":null,"abstract":"The long term and great number of visitors to World Exposition 2010 Shanghai China (World Expo 2010) brought additional pressure to the regular urban traffic. This study provided daily visitor volume forecasts before the Expo Site opened each day. Related government departments benefited from the prediction in the management of Expo park service system and transportation scheduling. According to the natural classification of expo visitors into individuals and groups, the letter applied a hybrid methodology of fuzzy Takagi-Sugeno (T-S) models and linear least squares regression (LLSR) model to obtain the forecasts. The proposed approach showed the capacity of highly accurate prediction and remarkable robustness. And the results were timely issued through the Comprehensive Transportation Information Platform (CTIP) to the Shanghai government and Bureau of Shanghai World Expo Coordination for reference.","PeriodicalId":186596,"journal":{"name":"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)","volume":"432 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2011.6082994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The long term and great number of visitors to World Exposition 2010 Shanghai China (World Expo 2010) brought additional pressure to the regular urban traffic. This study provided daily visitor volume forecasts before the Expo Site opened each day. Related government departments benefited from the prediction in the management of Expo park service system and transportation scheduling. According to the natural classification of expo visitors into individuals and groups, the letter applied a hybrid methodology of fuzzy Takagi-Sugeno (T-S) models and linear least squares regression (LLSR) model to obtain the forecasts. The proposed approach showed the capacity of highly accurate prediction and remarkable robustness. And the results were timely issued through the Comprehensive Transportation Information Platform (CTIP) to the Shanghai government and Bureau of Shanghai World Expo Coordination for reference.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2010年中国上海世博会日游客数量预测
中国2010年上海世界博览会(World Expo 2010)的长期和大量游客给城市的正常交通带来了额外的压力。本研究提供了世博园区每天开园前的每日客流量预测。相关政府部门在世博园区服务体系管理和交通调度方面受益于预测。根据世博会参观者自然分类为个体和群体,采用模糊T-S模型和线性最小二乘回归(LLSR)模型的混合方法进行预测。该方法具有较高的预测精度和较好的鲁棒性。研究结果通过综合交通信息平台(CTIP)及时发布给上海市政府和上海世博会事务协调局参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera Path2Go: Context-aware services for mobile real-time multimodal traveler information Mobile traffic surveillance system for dynamic roadway and vehicle traffic data integration A pattern recognition approach for anomaly detection on buses brake system Evaluating active traffic and demand management strategies for congested tourism traffic corridor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1