Rhyming Knowledge-Aware Deep Neural Network for Chinese Poetry Generation

Wen-Chao Yeh, Yung-Chun Chang, Yu-Hsuan Li, Wei-Chieh Chang
{"title":"Rhyming Knowledge-Aware Deep Neural Network for Chinese Poetry Generation","authors":"Wen-Chao Yeh, Yung-Chun Chang, Yu-Hsuan Li, Wei-Chieh Chang","doi":"10.1109/ICMLC48188.2019.8949208","DOIUrl":null,"url":null,"abstract":"Analyzing and capturing the spirit in the historic Tang Dynasty poems for creating a machine that can compose new poetry is a difficult but fun challenge. In this research, we propose a rhyming knowledge-aware deep neural network for Chinese poetry generation. The model fuses rhyming knowledge that represents phonological tones into a long short-term memory (LSTM) model. This work will help us understand more about what kind of mechanism within the neural network contributes to different styles of the generated poems. The experimental results demonstrate that the proposed method is able to guide the style of those poems towards higher phonological compliance, fluency, coherence, and meaningfulness, as evaluated by human experts. We believe that future research can adopt our approach to further integrate more knowledge such as sentiments, POS, and even stylistic patterns found in poems by famous poets into poem generation.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Analyzing and capturing the spirit in the historic Tang Dynasty poems for creating a machine that can compose new poetry is a difficult but fun challenge. In this research, we propose a rhyming knowledge-aware deep neural network for Chinese poetry generation. The model fuses rhyming knowledge that represents phonological tones into a long short-term memory (LSTM) model. This work will help us understand more about what kind of mechanism within the neural network contributes to different styles of the generated poems. The experimental results demonstrate that the proposed method is able to guide the style of those poems towards higher phonological compliance, fluency, coherence, and meaningfulness, as evaluated by human experts. We believe that future research can adopt our approach to further integrate more knowledge such as sentiments, POS, and even stylistic patterns found in poems by famous poets into poem generation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汉语诗歌生成的韵律知识感知深度神经网络
分析和捕捉唐代古诗中的精神,创造出一种可以创作新诗的机器,这是一项困难但有趣的挑战。在本研究中,我们提出了一个用于汉语诗歌生成的押韵知识感知深度神经网络。该模型将代表语音的押韵知识融合到一个长短期记忆(LSTM)模型中。这项工作将有助于我们更多地了解神经网络内部是什么样的机制促成了不同风格的诗歌生成。实验结果表明,该方法能够引导这些诗歌的风格朝着更高的语音顺应性,流畅性,连贯性和意义的方向发展,正如人类专家所评估的那样。我们相信,未来的研究可以采用我们的方法,将更多著名诗人诗歌中的情感、词性、甚至文体模式等知识进一步整合到诗歌生成中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Empirical Study on the Classification of Chinese News Articles by Machine Learning and Deep Learning Techniques Posture Estimation Method Using Cushion Type Seat Pressure Sensor Advanced Convolutional Neural Network With Feedforward Inhibition Utilization of the Infrared Image Capturing Combustion State for Estimating the Steam Flow Aming to Stabilize Garbage Power Generation Domain Adaption for Facial Expression Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1