Locating and Extracting Wind Turbine Blade Cracks Using Haar-like Features and Clustering

Cherif Seibi, Zachary Ward, Masoum Mohammad A.S., Mohammad Shekaramiz
{"title":"Locating and Extracting Wind Turbine Blade Cracks Using Haar-like Features and Clustering","authors":"Cherif Seibi, Zachary Ward, Masoum Mohammad A.S., Mohammad Shekaramiz","doi":"10.1109/ietc54973.2022.9796823","DOIUrl":null,"url":null,"abstract":"Wind turbine blades can sustain damage during operation that can jeopardize the reliability of the entire wind power generator. This damage can be difficult to detect using conventional methods and, if unaddressed, could eventually result in the failure of the wind turbine. In this paper, a method of detecting wind turbine blade cracks from images is investigated which utilizes Haar-like features to locate cracks and the Jaya K-Means algorithm to extract the image pixels containing cracks. A modified turbine blade crack detection methodology based on existing technology is presented and coded in Python. Initial results for a small-scale wind turbine prototype with faulty blades at Utah Valley University look promising. Finally, a direction for continuing this undergraduate research project is put forth.","PeriodicalId":251518,"journal":{"name":"2022 Intermountain Engineering, Technology and Computing (IETC)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ietc54973.2022.9796823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Wind turbine blades can sustain damage during operation that can jeopardize the reliability of the entire wind power generator. This damage can be difficult to detect using conventional methods and, if unaddressed, could eventually result in the failure of the wind turbine. In this paper, a method of detecting wind turbine blade cracks from images is investigated which utilizes Haar-like features to locate cracks and the Jaya K-Means algorithm to extract the image pixels containing cracks. A modified turbine blade crack detection methodology based on existing technology is presented and coded in Python. Initial results for a small-scale wind turbine prototype with faulty blades at Utah Valley University look promising. Finally, a direction for continuing this undergraduate research project is put forth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于haar特征和聚类的风电叶片裂纹定位与提取
风力涡轮机叶片在运行过程中可能会遭受损坏,从而危及整个风力发电机的可靠性。这种损坏很难用常规方法检测,如果不加以解决,最终可能导致风力涡轮机的故障。本文研究了一种利用Haar-like特征定位裂纹,利用Jaya K-Means算法提取含有裂纹的图像像素点的风力发电机叶片图像裂纹检测方法。在现有技术的基础上,提出了一种改进的涡轮叶片裂纹检测方法,并用Python进行了编码。在犹他谷大学,一个有缺陷叶片的小型风力涡轮机原型机的初步结果看起来很有希望。最后,提出了继续进行本本科生课题研究的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilizing a Blockchain for Managing Sensor Metadata in Exposure Health Studies Identifying Patterns in Fault Recovery Techniques and Hardware Status of Radiation Tolerant Computers Using Principal Components Analysis Sketch-a-Map (SAM): Creative Route Art Generation Feature Analysis in Satellite Image Classification Using LC-KSVD and Frozen Dictionary Learning Long Range Sensor Network for Disaster Relief
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1