Online Multiple Object Tracking Using Single Object Tracker and Maximum Weight Clique Graph

Yujie Hu, Xiang Zhang, Yexin Li, Ran Tian
{"title":"Online Multiple Object Tracking Using Single Object Tracker and Maximum Weight Clique Graph","authors":"Yujie Hu, Xiang Zhang, Yexin Li, Ran Tian","doi":"10.1109/MMSP48831.2020.9287090","DOIUrl":null,"url":null,"abstract":"Tracking multiple objects is a challenging task in time-critical video analysis systems. In the popular tracking-by-detection framework, the core problems of a tracker are the quality of the employed input detections and the effectiveness of the data association. Towards this end, we propose a multiple object tracking method which employs a single object tracker to improve the results of unreliable detection and data association simultaneously. Besides, we utilize maximum weight clique graph algorithm to handle the optimal assignment in an online mode. In our method, a robust single object tracker is used to connect previous tracked objects to tackle the current noise detection and improve the data association as a motion cue. Furthermore, we use person re-identification network to learn the historical appearances of the tracklets in order to promote the tracker’s identification ability. We conduct extensive experiments on the MOT benchmark to demonstrate the effectiveness of our tracker.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tracking multiple objects is a challenging task in time-critical video analysis systems. In the popular tracking-by-detection framework, the core problems of a tracker are the quality of the employed input detections and the effectiveness of the data association. Towards this end, we propose a multiple object tracking method which employs a single object tracker to improve the results of unreliable detection and data association simultaneously. Besides, we utilize maximum weight clique graph algorithm to handle the optimal assignment in an online mode. In our method, a robust single object tracker is used to connect previous tracked objects to tackle the current noise detection and improve the data association as a motion cue. Furthermore, we use person re-identification network to learn the historical appearances of the tracklets in order to promote the tracker’s identification ability. We conduct extensive experiments on the MOT benchmark to demonstrate the effectiveness of our tracker.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于单目标跟踪和最大权值团图的在线多目标跟踪
在时间紧迫的视频分析系统中,跟踪多个目标是一项具有挑战性的任务。在流行的检测跟踪框架中,跟踪器的核心问题是所采用的输入检测的质量和数据关联的有效性。为此,我们提出了一种采用单目标跟踪器的多目标跟踪方法,以同时改善不可靠检测和数据关联的结果。此外,我们利用最大权值团图算法来处理在线模式下的最优分配。在我们的方法中,使用一个鲁棒的单目标跟踪器连接先前跟踪的目标来解决当前的噪声检测问题,并改善数据关联作为运动线索。此外,为了提高跟踪器的识别能力,我们使用人再识别网络来学习跟踪器的历史外观。我们在MOT基准上进行了大量的实验,以证明我们的跟踪器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Active Perception for Improving Embedding-based Deep Face Recognition Subjective Test Dataset and Meta-data-based Models for 360° Streaming Video Quality The Suitability of Texture Vibrations Based on Visually Perceived Virtual Textures in Bimodal and Trimodal Conditions DEMI: Deep Video Quality Estimation Model using Perceptual Video Quality Dimensions Learned BRIEF – transferring the knowledge from hand-crafted to learning-based descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1