Soil salinity prediction using a machine learning approach through hyperspectral satellite image

Salim Klibi, Kais Tounsi, Zouhaier Ben Rabah, B. Solaiman, I. Farah
{"title":"Soil salinity prediction using a machine learning approach through hyperspectral satellite image","authors":"Salim Klibi, Kais Tounsi, Zouhaier Ben Rabah, B. Solaiman, I. Farah","doi":"10.1109/ATSIP49331.2020.9231870","DOIUrl":null,"url":null,"abstract":"A major environmental threat is soil salinity caused by natural and human-induced processes. Therefore, soil salinity status monitoring is required to ensure sustainable land use and management. Hyperspectral satellite images can make a significant contribution to the detection of soil salinity. The increase in production in semi-arid and arid regions such as Zaghouan in the northeast of Tunisia requires good soil management because this resource is a determining factor for agricultural production. This paper aims to predict soil salinity in this area using spectral signature and features vector of the Hyperion hyperspectral image. The AutoEncoder (AE) is one of neural network architectures that were adopted for feature representation. Support Vector Machines (SVM), K-Nearest-Neighbors (KNN) and Decision Tree (DT) were used for the classification. Results showed that the AE-SVM combination outperforms among the three other approaches used for soil salinity prediction.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A major environmental threat is soil salinity caused by natural and human-induced processes. Therefore, soil salinity status monitoring is required to ensure sustainable land use and management. Hyperspectral satellite images can make a significant contribution to the detection of soil salinity. The increase in production in semi-arid and arid regions such as Zaghouan in the northeast of Tunisia requires good soil management because this resource is a determining factor for agricultural production. This paper aims to predict soil salinity in this area using spectral signature and features vector of the Hyperion hyperspectral image. The AutoEncoder (AE) is one of neural network architectures that were adopted for feature representation. Support Vector Machines (SVM), K-Nearest-Neighbors (KNN) and Decision Tree (DT) were used for the classification. Results showed that the AE-SVM combination outperforms among the three other approaches used for soil salinity prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高光谱卫星图像的土壤盐分预测
一个主要的环境威胁是由自然和人为过程引起的土壤盐碱化。因此,需要对土壤盐分状况进行监测,以确保土地的可持续利用和管理。高光谱卫星图像可以对土壤盐度的检测做出重大贡献。半干旱和干旱地区(如突尼斯东北部的扎古万)的产量增加需要良好的土壤管理,因为这种资源是农业生产的决定性因素。利用Hyperion高光谱图像的光谱特征和特征向量对该地区土壤盐分进行预测。自动编码器(AE)是一种用于特征表示的神经网络结构。使用支持向量机(SVM)、k -最近邻(KNN)和决策树(DT)进行分类。结果表明,AE-SVM组合方法在土壤盐分预测中的效果优于其他三种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches Generation of fuzzy evidence numbers for the evaluation of uncertainty measures Speckle Denoising of the Multipolarization Images by Hybrid Filters Identification of the user by using a hardware device Lightweight Hardware Architectures for the Piccolo Block Cipher in FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1