Path for Kernel Adaptive One-Class Support Vector Machine

Van Khoa Le, P. Beauseroy
{"title":"Path for Kernel Adaptive One-Class Support Vector Machine","authors":"Van Khoa Le, P. Beauseroy","doi":"10.1109/ICMLA.2015.127","DOIUrl":null,"url":null,"abstract":"This paper proposes a Kernel Adaptive One Class SVM (KAOC-SVM) method based on the model introduced by A. Scholkopf and al. [7]. The aim is to find the solution path - the path of Lagrange multiplier a - as the kernel parameter changes from one value to another. It is similar to the regularization path approach proposed by Hastie and al. [2], which finds the path when the regularization parameter ? changes from 0 to 1. In present case, the main difference is that the Lagrange multiplier paths are not piecewise linear anymore. Experimental results show that the proposed method is able to compute one-class SVMs with the same accuracy as traditional method but exploring all solutions combining 2 kernels. Simulation results are presented and CPU requirement is analyzed.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a Kernel Adaptive One Class SVM (KAOC-SVM) method based on the model introduced by A. Scholkopf and al. [7]. The aim is to find the solution path - the path of Lagrange multiplier a - as the kernel parameter changes from one value to another. It is similar to the regularization path approach proposed by Hastie and al. [2], which finds the path when the regularization parameter ? changes from 0 to 1. In present case, the main difference is that the Lagrange multiplier paths are not piecewise linear anymore. Experimental results show that the proposed method is able to compute one-class SVMs with the same accuracy as traditional method but exploring all solutions combining 2 kernels. Simulation results are presented and CPU requirement is analyzed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核自适应一类支持向量机路径
本文基于a . Scholkopf等人[7]提出的模型,提出了一种核自适应一类支持向量机(KAOC-SVM)方法。其目的是找到当核参数从一个值变化到另一个值时的解路径——拉格朗日乘子a的路径。它类似于Hastie等人[2]提出的正则化路径方法,当正则化参数?从0到1。在目前的情况下,主要的区别在于拉格朗日乘子路径不再是分段线性的。实验结果表明,该方法能够以与传统方法相同的精度计算一类支持向量机,但可以探索包含两个核的所有解。给出了仿真结果,并分析了对CPU的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of SPEI Using MLR and ANN: A Case Study for Wilsons Promontory Station in Victoria Statistical Downscaling of Climate Change Scenarios of Rainfall and Temperature over Indira Sagar Canal Command Area in Madhya Pradesh, India Lambda Consensus Clustering Time Series Prediction Based on Online Learning NewsCubeSum: A Personalized Multidimensional News Update Summarization System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1