{"title":"On the Variability-aware Design of Memristor-based Logic Circuits","authors":"M. Escudero, I. Vourkas, A. Rubio, F. Molll","doi":"10.1109/NANO.2018.8626367","DOIUrl":null,"url":null,"abstract":"Ever since the advent of the first TiO2-based memristor and the respective linear model published by Hewlett-Packard Labs, several behavioral models of memristors have been published. Such models capture the fundamental characteristics of resistive switching behavior through simple equations and rules, so they received a lot of attention and contributed significantly to the fast progress of research in this new and emerging device technology field. However, while this technology is maturing, accurate physics-based models are being developed, which go deeper into the device dynamics and capture more details than what just would be the fundamentals: i.e. parasitics of the device structure, variability of threshold voltages and resistance states, temperature dependency, dynamic current fluctuations, etc. In this work we build upon such a physics-based model of a bipolar metal-oxide resistive RAM device, showing how to take into account device variability and its significance in evaluation of processing circuits. With the Cadence Virtuoso suite, we focus on a family of memristive logic gate implementations showing that read & write errors can emerge due to both variability and state-drift impact, features rarely seen so far in results shown in other relevant published works.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Ever since the advent of the first TiO2-based memristor and the respective linear model published by Hewlett-Packard Labs, several behavioral models of memristors have been published. Such models capture the fundamental characteristics of resistive switching behavior through simple equations and rules, so they received a lot of attention and contributed significantly to the fast progress of research in this new and emerging device technology field. However, while this technology is maturing, accurate physics-based models are being developed, which go deeper into the device dynamics and capture more details than what just would be the fundamentals: i.e. parasitics of the device structure, variability of threshold voltages and resistance states, temperature dependency, dynamic current fluctuations, etc. In this work we build upon such a physics-based model of a bipolar metal-oxide resistive RAM device, showing how to take into account device variability and its significance in evaluation of processing circuits. With the Cadence Virtuoso suite, we focus on a family of memristive logic gate implementations showing that read & write errors can emerge due to both variability and state-drift impact, features rarely seen so far in results shown in other relevant published works.