Recognition of JSL finger spelling using convolutional neural networks

Hana Hosoe, Shinji Sako, B. Kwolek
{"title":"Recognition of JSL finger spelling using convolutional neural networks","authors":"Hana Hosoe, Shinji Sako, B. Kwolek","doi":"10.23919/MVA.2017.7986796","DOIUrl":null,"url":null,"abstract":"Recently, a few methods for recognition of hand postures on depth maps using convolutional neural networks were proposed. In this paper, we present a framework for recognition of static finger spelling in Japanese Sign Language. The recognition takes place on the basis of single gray image. The finger spelled signs are recognized using a convolutional neural network. A dataset consisting of5000 samples has been recorded. A 3D articulated hand model has been designed to generate synthetic finger spellings and to extend the real hand gestures. Experimental results demonstrate that owing to sufficient amount of training data a high recognition rate can be attained on images from a single RGB camera. The full dataset and Caffe model are available for download.","PeriodicalId":193716,"journal":{"name":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA.2017.7986796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Recently, a few methods for recognition of hand postures on depth maps using convolutional neural networks were proposed. In this paper, we present a framework for recognition of static finger spelling in Japanese Sign Language. The recognition takes place on the basis of single gray image. The finger spelled signs are recognized using a convolutional neural network. A dataset consisting of5000 samples has been recorded. A 3D articulated hand model has been designed to generate synthetic finger spellings and to extend the real hand gestures. Experimental results demonstrate that owing to sufficient amount of training data a high recognition rate can be attained on images from a single RGB camera. The full dataset and Caffe model are available for download.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络识别JSL手指拼写
近年来,人们提出了几种基于卷积神经网络的深度图手势识别方法。本文提出了一个日语手语静态手指拼写识别框架。识别是在单幅灰度图像的基础上进行的。用卷积神经网络识别手指拼写的符号。记录了由5000个样本组成的数据集。设计了一个3D关节手模型来生成合成的手指拼写并扩展真实的手势。实验结果表明,在训练数据量足够的情况下,对单个RGB相机的图像可以获得较高的识别率。完整的数据集和Caffe模型可供下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixture particle filter with block jump biomechanics constraint for volleyball players lower body parts tracking Event based surveillance video synopsis using trajectory kinematics descriptors Banknote portrait detection using convolutional neural network Ball-like observation model and multi-peak distribution estimation based particle filter for 3D Ping-pong ball tracking FPGA implementation of high frame rate and ultra-low delay vision system with local and global parallel based matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1