Event based surveillance video synopsis using trajectory kinematics descriptors

Wei-Cheng Wang, P. Chung, Chun-Rong Huang, Wei-Yun Huang
{"title":"Event based surveillance video synopsis using trajectory kinematics descriptors","authors":"Wei-Cheng Wang, P. Chung, Chun-Rong Huang, Wei-Yun Huang","doi":"10.23919/MVA.2017.7986848","DOIUrl":null,"url":null,"abstract":"Video synopsis has been shown its promising performance in visual surveillance, but the rearranged foreground objects may disorderly occlude to each other which makes end users hard to identify the targets. In this paper, a novel event based video synopsis method is proposed by using the clustering results of trajectories of foreground objects. To represent the kinematic events of each trajectory, trajectory kinematics descriptors are applied. Then, affinity propagation is used to cluster trajectories with similar kinematic events. Finally, each kinematic event group is used to generate an event based synopsis video. As shown in the experiments, the generated event based synopsis videos can effectively and efficiently reduce the lengths of the surveillance videos and are much clear for browsing compared to the states-of-the-art video synopsis methods.","PeriodicalId":193716,"journal":{"name":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA.2017.7986848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Video synopsis has been shown its promising performance in visual surveillance, but the rearranged foreground objects may disorderly occlude to each other which makes end users hard to identify the targets. In this paper, a novel event based video synopsis method is proposed by using the clustering results of trajectories of foreground objects. To represent the kinematic events of each trajectory, trajectory kinematics descriptors are applied. Then, affinity propagation is used to cluster trajectories with similar kinematic events. Finally, each kinematic event group is used to generate an event based synopsis video. As shown in the experiments, the generated event based synopsis videos can effectively and efficiently reduce the lengths of the surveillance videos and are much clear for browsing compared to the states-of-the-art video synopsis methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用轨迹运动学描述符的基于事件的监控视频摘要
视频摘要在视觉监控中已显示出其良好的应用前景,但重新排列后的前景对象可能会相互无序遮挡,给最终用户识别目标带来困难。本文利用前景目标轨迹聚类结果,提出了一种基于事件的视频摘要方法。为了表示每个轨迹的运动学事件,应用了轨迹运动学描述符。然后,使用亲和传播对具有相似运动事件的轨迹进行聚类。最后,利用每个运动事件组生成一个基于事件的摘要视频。实验表明,与现有的视频摘要方法相比,所生成的基于事件的视频摘要可以有效地缩短监控视频的长度,并且更易于浏览。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixture particle filter with block jump biomechanics constraint for volleyball players lower body parts tracking Event based surveillance video synopsis using trajectory kinematics descriptors Banknote portrait detection using convolutional neural network Ball-like observation model and multi-peak distribution estimation based particle filter for 3D Ping-pong ball tracking FPGA implementation of high frame rate and ultra-low delay vision system with local and global parallel based matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1