Population based ant colony optimization on FPGA

Michael Guntsch, M. Middendorf, B. Scheuermann, O. Diessel, H. ElGindy, H. Schmeck, K. So
{"title":"Population based ant colony optimization on FPGA","authors":"Michael Guntsch, M. Middendorf, B. Scheuermann, O. Diessel, H. ElGindy, H. Schmeck, K. So","doi":"10.1109/FPT.2002.1188673","DOIUrl":null,"url":null,"abstract":"We propose to modify a type of ant algorithm called Population based Ant Colony Optimization (P-ACO) to allow implementation on an FPGA architecture. Ant algorithms are adapted from the natural behavior of ants and used to find good solutions to combinatorial optimization problems. General layout on the FPGA and algorithmic description are covered The most notable achievements featured in this paper are a runtime reduction and including the approximation of the heuristic function by a small set of favored decisions which changes over time.","PeriodicalId":355740,"journal":{"name":"2002 IEEE International Conference on Field-Programmable Technology, 2002. (FPT). Proceedings.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Field-Programmable Technology, 2002. (FPT). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2002.1188673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We propose to modify a type of ant algorithm called Population based Ant Colony Optimization (P-ACO) to allow implementation on an FPGA architecture. Ant algorithms are adapted from the natural behavior of ants and used to find good solutions to combinatorial optimization problems. General layout on the FPGA and algorithmic description are covered The most notable achievements featured in this paper are a runtime reduction and including the approximation of the heuristic function by a small set of favored decisions which changes over time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FPGA的种群蚁群优化
我们建议修改一种称为基于种群的蚁群优化(P-ACO)的蚂蚁算法,以允许在FPGA架构上实现。蚁群算法是根据蚂蚁的自然行为来适应的,用于寻找组合优化问题的最佳解。本文中最显著的成就是运行时间的减少,包括通过一小组随时间变化的有利决策来逼近启发式函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution-based automated reconfiguration of field programmable analog devices Clustered programmable-reconfigurable processors Design and implementation of a novel architecture for symmetric FIR filters with boundary handling on Xilinx Virtex FPGAs Serial-parallel tradeoff analysis of all-pairs shortest path algorithms in reconfigurable computing A co-simulation study of adaptive EPIC computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1