An image-to-image loop-closure detection method based on unsupervised landmark extraction

E. Sariyanidi, O. Sencan, H. Temeltas
{"title":"An image-to-image loop-closure detection method based on unsupervised landmark extraction","authors":"E. Sariyanidi, O. Sencan, H. Temeltas","doi":"10.1109/IVS.2012.6232174","DOIUrl":null,"url":null,"abstract":"This paper presents a dedicated approach to detect loop closures using visually salient patches. We introduce a novel, energy maximization based saliency detection technique which has been used for unsupervised landmark extraction. We explain how to learn the extracted landmarks on-the-fly and re-identify them. Furthermore, we describe the sparse location representation we use to recognize previously seen locations in order to perform reliable loop closure detection. The performance of our method has been analyzed both on an indoor and an outdoor dataset, and it has been shown that our approach achieves quite promising results on both datasets.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a dedicated approach to detect loop closures using visually salient patches. We introduce a novel, energy maximization based saliency detection technique which has been used for unsupervised landmark extraction. We explain how to learn the extracted landmarks on-the-fly and re-identify them. Furthermore, we describe the sparse location representation we use to recognize previously seen locations in order to perform reliable loop closure detection. The performance of our method has been analyzed both on an indoor and an outdoor dataset, and it has been shown that our approach achieves quite promising results on both datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于无监督地标提取的图像间闭环检测方法
本文提出了一种专用的方法来检测环路闭合使用视觉显著补丁。我们介绍了一种新的,基于能量最大化的显著性检测技术,该技术已用于无监督地标提取。我们解释如何学习提取的地标在飞行和重新识别他们。此外,我们描述了稀疏的位置表示,我们用来识别以前看到的位置,以执行可靠的闭环检测。我们的方法的性能已经在室内和室外数据集上进行了分析,并且已经表明我们的方法在两个数据集上都取得了相当有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal experts' knowledge selection for intelligent driving risk detection systems Drivable space characterization using automotive lidar and georeferenced map information Manual convoying of automated urban vehicles relying on monocular vision Probabilistic trajectory prediction with Gaussian mixture models Field of safe travel: Using location and motion information to increase driver acceptance of pedestrian alerts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1